对比MySQL,学会在Pandas中实现SQL的常用操作(三)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 对比MySQL,学会在Pandas中实现SQL的常用操作(三)

3)left outer join左连接

在SQL中:


SELECT *
FROM df1
LEFT OUTER JOIN df2
  ON df1.key = df2.key;


在Dataframe中:


pd.merge(df1, df2, on='key', how='left')


结果如下:

image.png


4)right join右连接

在SQL中:


SELECT *
FROM df1
RIGHT OUTER JOIN df2
  ON df1.key = df2.key;


在Dataframe中:


pd.merge(df1, df2, on='key', how='right')


结果如下:

image.png


5)full join全连接

注意在MySQL中是不支持全连接的,一般是使用union完成这个操作的,这将在下面一个知识点中讲述。


在Dataframe中:


pd.merge(df1, df2, on='key', how='outer')


结果如下:

image.png


6、union数据合并

UNION (ALL)操作在Dataframe中可以使用concat()来执行。


1)数据准备

df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
                    'rank': range(1, 4)})
df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
                    'rank': [1, 4, 5]})


结果如下:

image.png


2)union all不去重合并

在SQL中:


SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
"""
         city    rank
      Chicago       1
San Francisco      2
New York City      3
      Chicago      1
       Boston      4
  Los Angeles      5
"""


在Dataframe中:


# 默认就是axis=0
pd.concat([df1, df2],axis=0)


结果如下:


image.png

3)union去重合并

在SQL中:


SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
"""
         city     rank
      Chicago       1
San Francisco      2
New York City      3
       Boston      4
  Los Angeles      5
"""


在Dataframe中:


pd.concat([df1, df2]).drop_duplicates()


结果如下:

image.png


7.取group分组后的Topn

在MySQL8.0以前的版本,可能是不支持窗口函数,因此求Topn可能有些费劲,以前的文章中已经讲述过,这里也就不在赘述。


有下面一堆数据,怎么求出Topn呢?


df = pd.DataFrame({"name":["张三","王五","李四","张三","王五","张三","李四","李四","王五"],
                   "subject":["语文","英语","数学","数学","语文","英语","语文","英语","数学"],
                   "score":[95,80,83,80,90,71,88,70,78]})
df


结果如下:

image.png

在Dataframe中:


df.groupby(["subject"]).apply(lambda df:df.sort_values("score",ascending=True))


结果如下:

image.png

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
11天前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
11天前
|
SQL 存储 关系型数据库
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
131 75
|
6天前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。
|
2月前
|
SQL 存储 关系型数据库
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
本文详细介绍了MySQL中的SQL语法,包括数据定义(DDL)、数据操作(DML)、数据查询(DQL)和数据控制(DCL)四个主要部分。内容涵盖了创建、修改和删除数据库、表以及表字段的操作,以及通过图形化工具DataGrip进行数据库管理和查询。此外,还讲解了数据的增、删、改、查操作,以及查询语句的条件、聚合函数、分组、排序和分页等知识点。
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
|
2月前
|
SQL 存储 缓存
MySQL进阶突击系列(02)一条更新SQL执行过程 | 讲透undoLog、redoLog、binLog日志三宝
本文详细介绍了MySQL中update SQL执行过程涉及的undoLog、redoLog和binLog三种日志的作用及其工作原理,包括它们如何确保数据的一致性和完整性,以及在事务提交过程中各自的角色。同时,文章还探讨了这些日志在故障恢复中的重要性,强调了合理配置相关参数对于提高系统稳定性的必要性。
|
2月前
|
SQL 关系型数据库 MySQL
MySQL 高级(进阶) SQL 语句
MySQL 提供了丰富的高级 SQL 语句功能,能够处理复杂的数据查询和管理需求。通过掌握窗口函数、子查询、联合查询、复杂连接操作和事务处理等高级技术,能够大幅提升数据库操作的效率和灵活性。在实际应用中,合理使用这些高级功能,可以更高效地管理和查询数据,满足多样化的业务需求。
304 3
|
2月前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
24天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
10天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
82 42
|
1天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
40 25