重学数据结构与算法(1) 代码效率优化方法论

简介: 复杂度是衡量代码运行效率的重要度量因素

一、代码效率优化方法论


熟练应用数据结构的知识,建立算法思维,完成代码效率的优化。


  • 复杂度是衡量代码运行效率的重要度量因素

  • 计算机通过一个个程序去执行计算任务,也就是对输入数据进行加工处理,并最终得到结果的过程;
  • 每个程序都是由代码构成的,编写代码的核心就是要完成计算;
  • 但对于同一个计算任务,不同计算方法得到结果的过程复杂程度是不一样的,这对实际的任务处理效率就有了非常大的影响;
  • 在实际应用中需要讲究合理的计算方法,去通过尽可能低复杂程度的代码完成计算任务;
  • 那提到降低复杂度,我们首先需要知道怎么衡量复杂度。


代码执行过程中会消耗计算时间和计算空间,那需要衡量的就是时间复杂度和空间复杂度。


不管是时间还是空间,它们的消耗程度都与输入的数据量高度相关,输入数据少时消耗自然就少。为了更客观地衡量消耗程度,我们通常会关注时间或者空间消耗量与输入数据量之间的关系。


复杂度是一个关于输入数据量 n 的函数。假设你的代码复杂度是 f(n),那么就用个大写字母 O 和括号,把 f(n) 括起来就可以了,即 O(f(n))。例如,O(n) 表示的是,复杂度与计算实例的个数 n 线性相关;O(logn) 表示的是,复杂度与计算实例的个数 n 对数相关。


通常,复杂度的计算方法遵循以下几个原则:


  • 复杂度与具体的常系数无关:例如 O(n) 和 O(2n) 表示的是同样的复杂度。我们详细分析下,O(2n) 等于 O(n+n),也等于 O(n) + O(n)。也就是说,一段 O(n) 复杂度的代码只是先后执行两遍 O(n),其复杂度是一致的。
  • 多项式级的复杂度相加的时候,选择高者作为结果:例如 O(n²)+O(n) 和 O(n²) 表示的是同样的复杂度。具体分析一下就是,O(n²)+O(n) = O(n²+n)。随着 n 越来越大,二阶多项式的变化率是要比一阶多项式更大的。因此,只需要通过更大变化率的二阶多项式来表征复杂度即可。
  • O(1) 表示一个特殊复杂度:含义为某个任务通过有限可数的资源即可完成。此处有限可数的具体意义是,与输入数据量 n 无关。


一些经验性的结论:


  • 一个顺序结构的代码,时间复杂度是 O(1);
  • 二分查找,或者更通用地说是采用分而治之的二分策略,时间复杂度都是 O(logn);
  • 一个简单的 for 循环,时间复杂度是 O(n);
  • 两个顺序执行的 for 循环,时间复杂度是 O(n)+O(n)=O(2n),其实也是 O(n);
  • 两个嵌套的 for 循环,时间复杂度是 O(n²);


降低时间复杂度的必要性:


假设某个计算任务需要处理 10 万 条数据,你编写的代码:


  • 如果是 O(n²) 的时间复杂度,那么计算的次数就大概是 100 亿次左右;
  • 如果是 O(n),那么计算的次数就是 10 万 次左右;
  • 如果能写出高效算法,在 O(log n) 的复杂度下完成任务,那么计算的次数就是 17 次左右(log 100000 = 16.61,计算机通常是二分法,这里的对数可以以 2 为底去估计)

通常在小数据集上,时间复杂度的降低在绝对处理时间上没有太多体现。但在当今        的大数据环境下,时间复杂度的优化将会带来巨大的系统收益。而这是优秀工程师        必须具备的工程开发基本意识。


复杂度通常包括时间复杂度和空间复杂度,在具体计算复杂度时需要注意以下几点:


  • 它与具体的常系数无关,O(n) 和 O(2n) 表示的是同样的复杂度;
  • 复杂度相加的时候,选择高次项作为结果,也就是说 O(n²)+O(n) 和 O(n²) 表示的是同样的复杂度;
  • O(1) 也是表示一个特殊复杂度,即任务与算例个数 n 无关;
  • 时间复杂度与代码的结构设计高度相关;
  • 空间复杂度与代码中数据结构的选择高度相关;


for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
        }
for (m=0; m<n; m++) {
        }
    }
}
时间复杂度为O(n^3)


二、将“昂贵”的时间复杂度转换成“廉价”的空间复杂度


代码效率优化就是要将可行解提高到更优解,最终目标是:要采用尽可能低的时间复杂度和空间复杂度,去完成一段代码的开发。


代码效率的瓶颈可能发生在时间或者空间两个方面。如果是缺少计算空间,花钱买服务器就可以了,这是个花钱就能解决的问题;相反,如果是缺少计算时间,只能投入宝贵的人生去跑程序。即使你有再多的钱、再多的服务器,也是毫无用处。相比于空间复杂度,时间复杂度的降低就显得更加重要了。因此,可以发现这样的结论:相对而言,空间是廉价的,而时间是昂贵的。


假定在不限制时间、也不限制空间的情况下,你可以完成某个任务的代码的开发。这就是通常我们所说的暴力解法,更是程序优化的起点。


例如,如果要在 100 以内的正整数中,找到同时满足以下两个条件的最小数字:


  • 除 5 余 2
  • 除 7 余 3


暴力的解法就是,从 1 开始到 100,每个数字都做一次判断。如果这个数字满足了上述两个条件,则返回结果。这是一种不计较任何时间复杂度或空间复杂度的、最直观的暴力解法。


当你有了最暴力的解法后,就需要用上一讲的方法评估当前暴力解法的复杂度了。如果复杂度比较低或者可以接受,那自然万事大吉。可如果暴力解法复杂度比较高的话,那就要考虑采用程序优化的方法去降低复杂度了。


为了降低复杂度,一个直观的思路是:梳理程序,看其流程中是否有无效的计算或者无效的存储。


我们需要从时间复杂度和空间复杂度两个维度来考虑。常用的降低时间复杂度的方法有递归、二分法、排序算法、动态规划等;而降低空间复杂度的方法,就要围绕数据结构做文章了。


降低空间复杂度的核心思路就是:能用低复杂度的数据结构能解决问题,就千万不要用高复杂度的数据结构。


在程序开发中,连接时间和空间的桥梁就是数据结构。对于一个开发任务,如果你能找到一种高效的数据组织方式,采用合理的数据结构的话,那就可以实现时间复杂度的再次降低。同样的,这通常会增加数据的存储量,也就是增加了空间复杂度。


程序优化的核心的思路如下:


  • 第一步,暴力解法。在没有任何时间、空间约束下,完成代码任务的开发。
  • 第二步,处理无效操作。将代码中的无效计算、无效存储剔除,降低时间或空间复杂度。
  • 第三步,时空转换。设计合理数据结构,完成时间复杂度向空间复杂度的转移,以空间换时间。


举例如下:


假设有任意多张面额为2元、3元、7元的货币,现要用它们凑出100元,求总共有多少种可能性。


count=0foriinrange(0, 100//7+1):
forjinrange(0, 100//3+1):
forkinrange(0, 100//2+1):
ifi*7+j*3+k*2==100:
count+=1print(f'总共有 {count} 种可能性')
运行结果如下:总共有134种可能性


在这段代码中,使用了 3 层的 for 循环。从结构上来看,很显然是 O( n³ ) 的时间复杂度。然而,仔细观察就会发现,代码中最内层的 for 循环是多余的。因为,当你确定了要用 i 张 7 元和 j 张 3 元时,只需要判断用有限个 2 元能否凑出 100 - 7* i - 3* j 元即可,代码改写如下:


count=0foriinrange(0, 100//7+1):
forjinrange(0, 100//3+1):
if (100-7*i-3*j) >=0and (100-i*7-j*3) %2==0:
count+=1print(f'总共有 {count} 种可能性')
运行结果如下:总共有134种可能性


经过优化后,代码的结构由 3 层 for 循环,变成了 2 层 for 循环。很显然,时间复杂度就变成了O(n²) 。这样的代码改造,就是利用了方法论中的步骤二,将代码中的无效计算、无效存储剔除,降低时间或空间复杂度。


查找出一个数组中,出现次数最多的那个元素的数值。例如,输入a= [1,2,3,4,6,5,6,6 ] 中,查找出现次数最多的数值。从数组中可以看出,只有6出现了3次,其余都是1次。显然6出现的次数最多,结果输出6


a= [1, 2, 3, 4, 6, 5, 6, 6]
val_max, time_max=-1, 0foriinrange(0, len(a)):
time_tmp=0forjinrange(0, len(a)):
ifa[i] ==a[j]:
time_tmp+=1# 出现次数大于之前最大的   重新复制 value 和出现次数iftime_tmp>time_max:
time_max=time_tmpval_max=a[i]
print(val_max, time_tmp)     
运行结果如下:63


采用两层的 for 循环完成计算, 很显然时间复杂度是 O(n²)。第一层循环,对数组每个元素遍历。第二层循环,则是对第一层遍历的数字,去遍历计算其出现的次数。这样,全局再同时缓存一个出现次数最多的元素及其次数就可以实现。代码中,几乎没有冗余的无效计算。如果还需要再去优化,就要考虑采用一些数据结构方面的手段,来把时间复杂度转移到空间复杂度了。


这个问题能否通过一次 for 循环就找到答案呢?一个直观的想法是,一次循环的过程中,我们同步记录下每个元素出现的次数。最后,再通过查找次数最大的元素,就得到了结果。


具体而言,定义一个 k-v 结构的字典,用来存放元素-出现次数的 k-v 关系。那么首先通过一次循环,将数组转变为元素-出现次数的一个字典。接下来,再去遍历一遍这个字典,找到出现次数最多的那个元素,就能找到最后的结果了。


a= [1, 2, 3, 4, 6, 5, 6, 6]
d= {}
foriina:
ifiind.keys():
d[i] +=1else:
d[i] =1print(d)
fork, vind.items():
ifv>temp_max:
time_max=vprint(temp_max)
val_max=kprint(val_max, time_max)
运行结果如下:63


来计算下这种方法的时空复杂度。代码结构上,有两个 for 循环。不过,这两个循环不是嵌套关系,而是顺序执行关系。其中,第一个循环实现了数组转字典的过程,也就是 O(n) 的复杂度。第二个循环再次遍历字典找到出现次数最多的那个元素,也是一个 O(n) 的时间复杂度。


因此,总体的时间复杂度为 O(n) + O(n),就是 O(2n),根据复杂度与具体的常系数无关的原则,也就是O(n) 的复杂度。空间方面,由于定义了 k-v 字典,其字典元素的个数取决于输入数组元素的个数。因此,空间复杂度增加为 O(n)。


这段代码的开发,就是借鉴了方法论中的步骤三,通过采用更复杂、高效的数据结构,完成了时空转移,提高了空间复杂度,让时间复杂度再次降低。


降低复杂度,优化程序的核心的思路如下:


  • 第一步,暴力解法。在没有任何时间、空间约束下,完成代码任务的开发。
  • 第二步,处理无效操作。将代码中的无效计算、无效存储剔除,降低时间或空间复杂度。
  • 第三步,时空转换。设计合理数据结构,完成时间复杂度向空间复杂度的转移,以空间换时间。
目录
相关文章
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
15天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
22 5
|
26天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
28天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
45 6
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
1月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
40 3
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。