下面的代码直接可以运行,且效果很好,sample原版改版:
// face_detect.cpp : 定义控制台应用程序的入口点。 // //#include "stdafx.h" #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/ml/ml.hpp" #include <iostream> #include <stdio.h> using namespace std; using namespace cv; String cascadeName = "./haarcascade_frontalface_alt2.xml";//人脸的训练数据 //String nestedCascadeName = "./haarcascade_eye_tree_eyeglasses.xml";//人眼的训练数据 String nestedCascadeName = "./haarcascade_eye.xml";//人眼的训练数据 void detectAndDraw( Mat& img, CascadeClassifier& cascade, CascadeClassifier& nestedCascade, double scale) { int i = 0; double t = 0; vector<Rect> faces; const static Scalar colors[] = { CV_RGB(0,0,255), CV_RGB(0,128,255), CV_RGB(0,255,255), CV_RGB(0,255,0), CV_RGB(255,128,0), CV_RGB(255,255,0), CV_RGB(255,0,0), CV_RGB(255,0,255)} ;//用不同的颜色表示不同的人脸 Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );//将图片缩小,加快检测速度 cvtColor( img, gray, CV_BGR2GRAY );//因为用的是类haar特征,所以都是基于灰度图像的,这里要转换成灰度图像 resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );//将尺寸缩小到1/scale,用线性插值 equalizeHist( smallImg, smallImg );//直方图均衡 t = (double)cvGetTickCount();//用来计算算法执行时间 //检测人脸 //detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示 //每次图像尺寸减小的比例为1.1,2表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大 //小都可以检测到人脸),CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的 //最小最大尺寸 cascade.detectMultiScale( smallImg, faces, 1.1, 2, 0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH |CV_HAAR_SCALE_IMAGE , Size(30, 30) ); t = (double)cvGetTickCount() - t;//相减为算法执行的时间 printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) { Mat smallImgROI; vector<Rect> nestedObjects; Point center; Scalar color = colors[i%8]; int radius; center.x = cvRound((r->x + r->width*0.5)*scale);//还原成原来的大小 center.y = cvRound((r->y + r->height*0.5)*scale); radius = cvRound((r->width + r->height)*0.25*scale); circle( img, center, radius, color, 3, 8, 0 ); //检测人眼,在每幅人脸图上画出人眼 if( nestedCascade.empty() ) continue; smallImgROI = smallImg(*r); //和上面的函数功能一样 nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 1.1, 2, 0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH //|CV_HAAR_DO_CANNY_PRUNING |CV_HAAR_SCALE_IMAGE , Size(30, 30) ); for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ) { center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); radius = cvRound((nr->width + nr->height)*0.25*scale); circle( img, center, radius, color, 3, 8, 0 );//将眼睛也画出来,和对应人脸的图形是一样的 } } cv::imshow( "result", img ); } int main( int argc, const char** argv ) { Mat image; CascadeClassifier cascade, nestedCascade;//创建级联分类器对象 double scale = 1.3; //image = imread( "lena.jpg", 1 );//读入lena图片 image = imread("0055.jpg",1); namedWindow( "result", 1 );//opencv2.0以后用namedWindow函数会自动销毁窗口 if( !cascade.load( cascadeName ) )//从指定的文件目录中加载级联分类器 { cerr << "ERROR: Could not load classifier cascade" << endl; return 0; } if( !nestedCascade.load( nestedCascadeName ) ) { cerr << "WARNING: Could not load classifier cascade for nested objects" << endl; return 0; } if( !image.empty() )//读取图片数据不能为空 { detectAndDraw( image, cascade, nestedCascade, scale ); waitKey(0); } return 0; }