Rem of Sum is Num——UPC

简介: 题目描述Given are a sequence of N positive integers A1,A2,…,AN, and a positive integer K.Find the number of non-empty contiguous subsequences in A such that the remainder when dividing the sum of its elements by K is equal to the number of its elements.

题目描述


Given are a sequence of N positive integers A1,A2,…,AN, and a positive integer K.

Find the number of non-empty contiguous subsequences in A such that the remainder when dividing the sum of its elements by K is equal to the number of its elements. We consider two subsequences different if they are taken from different positions, even if they are equal sequences.

Constraints

·All values in input are integers.

·1≤N≤2×105

·1≤K≤109

·1≤Ai≤109


输入


Input is given from Standard Input in the following format:


N K
A1 A2 ⋯ AN


输出


Print the number of subsequences that satisfy the condition.


样例输入


【样例1】
5 4
1 4 2 3 5
【样例2】
8 4
4 2 4 2 4 2 4 2
【样例3】
10 7
14 15 92 65 35 89 79 32 38 46


样例输出


【样例1】
4
【样例2】
7
【样例3】
8


提示


样例1解释

Four sequences satisfy the condition: (1), (4,2), (1,4,2), and (5).

样例2解释

(4,2) is counted four times, and (2,4) is counted three times.


#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize (2)
#pragma G++ optimize (2)
#include <bits/stdc++.h>
#include <algorithm>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
#define wuyt main
typedef long long ll;
#define HEAP(...) priority_queue<__VA_ARGS__ >
#define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
//#define getchar()(p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 21) + 1], *p1 = buf, *p2 = buf;
ll read(){ll c = getchar(),Nig = 1,x = 0;while(!isdigit(c) && c!='-')c = getchar();
if(c == '-')Nig = -1,c = getchar();
while(isdigit(c))x = ((x<<1) + (x<<3)) + (c^'0'),c = getchar();
return Nig*x;}
#define read read()
const ll inf = 1e15;
const int maxn = 2e5 + 7;
const int mod = 1e9 + 7;
#define start int wuyt()
#define end return 0
int num[maxn],num2[maxn],n,k;
map<int,int> mp;
ll ans;
start
{
    n=read,k=read;
    for(int i=1;i<=n;++i) {
        num[i]=read;
        num2[i]=(num2[i-1]+num[i])%k;
    }
    for(int i=1;i<=n;++i)
        num2[i]=((num2[i]-i)%k+k)%k;//负数
    for(int i=0;i<=n;++i) {
        if(i-k>=0)
            mp[num2[i-k]]--;
        ans+=mp[num2[i]];
        mp[num2[i]]++;
    }
    cout<<ans<<endl;
    end;
}
/**************************************************************
    Language: C++
    Result: 正确
    Time:202 ms
    Memory:12964 kb
****************************************************************/
目录
相关文章
|
7月前
|
人工智能 BI
|
算法
LeetCode 363. Max Sum of Rect No Larger Than K
给定一个非空二维矩阵 matrix 和一个整数 k,找到这个矩阵内部不大于 k 的最大矩形和。
103 0
LeetCode 363. Max Sum of Rect No Larger Than K
|
文件存储
Sum of Round Numbers
Sum of Round Numbers
140 0
Sum of Round Numbers
HDOJ 2071 Max Num
HDOJ 2071 Max Num
103 0
HDOJ 2071 Max Num
|
人工智能 BI vr&ar
div2-1519-D-Maximum Sum of Products-dp
You are given two integer arrays a and b of length n. You can reverse at most one subarray (continuous subsegment) of the array a. Your task is to reverse such a subarray that the sum ∑ i = 1 n a [ i ] ⋅ b [ i ] \sum_{i=1}^na[i]⋅b[i]∑ i=1 n ​ a[i]⋅b[i] is maximized.
136 0
HDOJ 1003 Max Sum
HDOJ 1003 Max Sum
102 0
HDOJ1003Max Sum
HDOJ1003Max Sum
83 0