时序预测的三种方式:统计学模型、机器学习、循环神经网络

简介: 时序预测是一类经典的问题,在学术界和工业界都有着广泛的研究和应用。甚至说,世间万物加上时间维度后都可抽象为时间序列问题,例如股票价格、天气变化等等。关于时序预测问题的相关理论也极为广泛,除了经典的各种统计学模型外,当下火热的机器学习以及深度学习中的循环神经网络也都可以用于时序预测问题的建模。今天,本文就来介绍三种方式的简单应用,并在一个真实的时序数据集上加以验证。

640.png


时间序列预测,其主要任务是基于某一指标的历史数据来预测其在未来的取值,例如上图中的曲线记录了1949年至1960共12年144个月份的每月航班乘客数(具体单位未经考证,那么时序预测要解决的问题就是给定前9年的历史数据,例如1949-1957,那么能否预测出1958-1960两年间的乘客数量的问题


为了解决这一问题,大概当前主流的解决方式有4种:


  • 统计学模型,较为经典的AR系列,包括AR、MA、ARMA以及ARIMA等,另外Facebook(准确的讲,现在应该叫Meta了)推出的Prophet模型,其实本质上也是一种统计学模型,只不过是传统的趋势、周期性成分的基础上,进一步细化考虑了节假日、时序拐点等因素的影响,以期带来更为精准的时序规律刻画;


  • 机器学习模型,在有监督机器学习中,回归问题主要解决的是基于一系列Feature来预测某一Label的可能取值的问题,那么当以历史数据作为Feature时其实自然也就可以将时序预测问题抽象为回归问题,从这一角度讲,所有回归模型都可用于解决时序预测。关于用机器学习抽象时序预测,推荐查看这篇论文《Machine Learning Strategies for Time Series Forecasting》;


  • 深度学习模型,深度学习主流的应用场景当属CV和NLP两大领域,其中后者就是专门用于解决序列问题建模的问题,而时间序列当然属于序列数据的一种特殊形式,所以自然可以运用循环神经网络来建模时序预测;


  • 隐马尔科夫模型,马尔科夫模型是用于刻画相邻状态转换间的经典抽象,而隐马尔科夫模型则在其基础上进一步增加了隐藏状态,来以此丰富模型的表达能力。但其一大假设条件是未来状态仅与当前状态有关,而不利于利用多个历史状态来共同参与预测,较为常用的可能就是天气预报的例子了。


本文主要考虑前三种时序预测建模方法,并分别选取:1)Prophet模型,2)RandomForest回归模型,3)LSTM三种方案加以测试。


首先在这个航班乘客真实数据集上进行测试,依次对比三个所选模型的预测精度。该数据集共有12年间每个月的乘客数量,以1958年1月作为切分界面划分训练集和测试集,即前9年的数据作为训练集,后3年的数据作为测试集验证模型效果。数据集切分后的示意图如下:


df = pd.read_csv("AirPassengers.csv", parse_dates=["date"]).rename(columns={"date":"ds", "value":"y"})
X_train = df[df.ds<"19580101"]
X_test = df[df.ds>="19580101"]
plt.plot(X_train['ds'], X_train['y'])
plt.plot(X_test['ds'], X_test['y'])


640.png


1.Prophet模型预测


Prophet是一个高度封装好的时序预测模型,接受一个DataFrame作为训练集(要求有ds和y两个字段列),在预测时也接受一个DataFrame,但此时只需有ds列即可,关于模型的详细介绍可参考其官方文档:https://facebook.github.io/prophet/。模型训练及预测部分核心代码如下:


from prophet import Prophet
pro = Prophet()
pro.fit(X_train)
pred = pro.predict(X_test)
pro.plot(pred)


训练后的结果示意图如下:


640.png


当然,这是通过Prophet内置的可视化函数给出的结果,也可通过手动绘制测试集真实标签与预测结果间的对比:


640.png

易见,虽然序列的整体走势上具有良好的拟合结果,但在具体取值上其实差距还是比较大的。


2.机器学习模型


这里选用常常用作各种baseline的RandomForest模型。在使用机器学习实现时序预测时,通常需要通过滑动窗口的方式来提取特征和标签,而后在实现预测时实际上也需滑动的截取测试集特征实现单步预测,参考论文《Machine Learning Strategies for Time Series Forecasting》中的做法,该问题可大致描述如下:


640.png


据此,设置特征提取窗口长度为12,构建训练集和测试集的方式如下:


data = df.copy()
n = 12
for i in range(1, n+1):
    data['ypre_'+str(i)] = data['y'].shift(i)
data = data[['ds']+['ypre_'+str(i) for i in range(n, 0, -1)]+['y']]
# 提取训练集和测试集
X_train = data[data['ds']<"19580101"].dropna()[['ypre_'+str(i) for i in range(n, 0, -1)]]
y_train = data[data['ds']<"19580101"].dropna()[['y']]
X_test = data[data['ds']>="19580101"].dropna()[['ypre_'+str(i) for i in range(n, 0, -1)]]
y_test = data[data['ds']>="19580101"].dropna()[['y']]
# 模型训练和预测
rf = RandomForestRegressor(n_estimators=10, max_depth=5)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
# 结果对比绘图
y_test.assign(yhat=y_pred).plot()


640.png


可见,预测效果也较为一般,尤其是对于最后两年的预测结果,与真实值差距还是比较大的。用机器学习模型的思维很容易解释这一现象:随机森林模型实际上是在根据训练数据集来学习曲线之间的规律,由于该时序整体呈现随时间增长的趋势,所以历史数据中的最高点也不足以cover住未来的较大值,因而在测试集中超过历史数据的所有标签其实都是无法拟合的。


3.深度学习中的循环神经网络


其实深度学习一般要求数据集较大时才能发挥其优势,而这里的数据集显然是非常小的,所以仅设计一个最为简单的模型:1层LSTM+1层Linear。模型搭建如下


class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.rnn = nn.LSTM(input_size=1, hidden_size=10, batch_first=True)
        self.linear = nn.Linear(10, 1)
    def forward(self, x):
        x, _ = self.rnn(x)
        x = x[:, -1, :]
        x = self.linear(x)
        return x


数据集构建思路整体同前述的机器学习部分,而后,按照进行模型训练炼丹,部分结果如下:


# 数据集转化为3D
X_train_3d = torch.Tensor(X_train.values).reshape(*X_train.shape, 1)
y_train_2d = torch.Tensor(y_train.values).reshape(*y_train.shape, 1)
X_test_3d = torch.Tensor(X_test.values).reshape(*X_test.shape, 1)
y_test_2d = torch.Tensor(y_test.values).reshape(*y_test.shape, 1)
# 模型、优化器、评估准则
model = Model()
creterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
# 训练过程
for i in range(1000):
    out = model(X_train_3d)
    loss = creterion(out, y_train_2d)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (i+1)%100 == 0:
        y_pred = model(X_test_3d)
        loss_test = creterion(y_pred, y_test_2d)
        print(i, loss.item(), loss_test.item())
# 训练结果
99 65492.08984375 188633.796875
199 64814.4375 187436.4375
299 64462.09765625 186815.5
399 64142.70703125 186251.125
499 63835.5 185707.46875
599 63535.15234375 185175.1875
699 63239.39453125 184650.46875
799 62947.08203125 184131.21875
899 62657.484375 183616.203125
999 62370.171875 183104.671875


通过上述1000个epoch,大体可以推断该模型不会很好的拟合了,所以果断放弃吧!


当然必须指出的是,上述测试效果只能说明3种方案在该数据集上的表现,而不能代表这一类模型在用于时序预测问题时的性能。实际上,时序预测问题本身就是一个需要具体问题具体分析的场景,没有放之四海而皆准的好模型,就像“No Free Lunch”一样!


本文仅是作为时序预测系列推文的一个牛刀小试,后续将不定期更新其他相关心得和总结。


640.png







目录
相关文章
|
4月前
|
C++
基于Reactor模型的高性能网络库之地址篇
这段代码定义了一个 InetAddress 类,是 C++ 网络编程中用于封装 IPv4 地址和端口的常见做法。该类的主要作用是方便地表示和操作一个网络地址(IP + 端口)
283 58
|
4月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
172 2
|
4月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
156 1
|
4月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
6月前
|
域名解析 网络协议 安全
计算机网络TCP/IP四层模型
本文介绍了TCP/IP模型的四层结构及其与OSI模型的对比。网络接口层负责物理网络接口,处理MAC地址和帧传输;网络层管理IP地址和路由选择,确保数据包准确送达;传输层提供端到端通信,支持可靠(TCP)或不可靠(UDP)传输;应用层直接面向用户,提供如HTTP、FTP等服务。此外,还详细描述了数据封装与解封装过程,以及两模型在层次划分上的差异。
1176 13
|
6月前
|
网络协议 中间件 网络安全
计算机网络OSI七层模型
OSI模型分为七层,各层功能明确:物理层传输比特流,数据链路层负责帧传输,网络层处理数据包路由,传输层确保端到端可靠传输,会话层管理会话,表示层负责数据格式转换与加密,应用层提供网络服务。数据在传输中经过封装与解封装过程。OSI模型优点包括标准化、模块化和互操作性,但也存在复杂性高、效率较低及实用性不足的问题,在实际中TCP/IP模型更常用。
921 10
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
200 2
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
4月前
基于Reactor模型的高性能网络库之Poller(EpollPoller)组件
封装底层 I/O 多路复用机制(如 epoll)的抽象类 Poller,提供统一接口支持多种实现。Poller 是一个抽象基类,定义了 Channel 管理、事件收集等核心功能,并与 EventLoop 绑定。其子类 EPollPoller 实现了基于 epoll 的具体操作,包括事件等待、Channel 更新和删除等。通过工厂方法可创建默认的 Poller 实例,实现多态调用。
293 60