Python3入门笔记七之面向对象高级编程

简介: '限制实例的属性:__slots__ ,把一个方法变成属性调用:@property装饰器,多重继承&MixIn,定制类,枚举类:Enum,元类'限制实例的属性:__slots__限制实例的属性 比如只允许对Student实例添加name和age属性。 由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。注意:__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的


'限制实例的属性:__slots__ ,把一个方法变成属性调用:@property装饰器,多重继承&MixIn,定制类,枚举类:Enum,元类'


限制实例的属性:__slots__


限制实例的属性 比如只允许对Student实例添加name和age属性。 由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。注意:__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的


class Student(object):
    __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
s = Student()
s.name='a'
s.age=11
s.score=99 # AttributeError: 'Student' object has no attribute 'score'
复制代码


子类实例允许定义的属性就是自身的__slots__加上父类的__slots__


把一个方法变成属性调用:@property装饰器


把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值


class Student(object):
    @property
    def score(self):
        return self._score
    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value
s = Student()
s.score=11
s.score
复制代码


不写 @score.setter 的话就只能读这个属性


多重继承&MixIn


(⊙﹏⊙) 这个就和java的不同了,在java中只能单继承,多实现。 而在这个python中,直接在括号中添加对应的父类即可。


class Dog(Mammal, RunnableMixIn):
    pass
复制代码


上面这个例子在设计上也称为mixin


MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。


一般单继承的class名称不加后缀MixIn(如Mammal),这个多继承的点要加后缀MixIn如(RunnableMixIn),


Python自带了TCPServerUDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程多线程模型,这两种模型由ForkingMixInThreadingMixIn提供。

多线程模式的UDP服务:


class MyUDPServer(UDPServer, ThreadingMixIn):
    pass
复制代码


定制类


python3官方文档定制类介绍


__str__(),__repr__()


这两个同Java的toString()方法,只不过这个__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,__repr__()是为调试服务的


class Student(object):
    def __init__(self, name):
        self.name = name
    def __str__(self): # 2
        return 'Student object (name=%s)' % self.name
    __repr__ = __str__ # 1
s=Student('ken')
s # 2
print(s) # 1 Student object (name=ken)
# 同时注释掉 # 1 的内容就可以看到效果
复制代码


__iter__


如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。


这个博主之前的文章中也也有记录到:《python3入门笔记三之高级特性---切片,迭代,列表生成式,生成器,迭代器


网络异常,图片无法展示
|



class Fib(object):
    def __init__(self):
        self.a, self.b = 0, 1 # 初始化两个计数器a,b
    def __iter__(self):
        return self # 实例本身就是迭代对象,故返回自己
    def __next__(self):
        self.a, self.b = self.b, self.a + self.b # 计算下一个值
        if self.a > 100: # 退出循环的条件
            raise StopIteration()
        return self.a # 返回下一个值
for n in Fib():
    print(n) # 1 1 2 3 5 8...89
复制代码


__getitem__


  1. 按照下标取出元素


class Fib(object):
    def __getitem__(self, n):
        a, b = 1, 1
        for x in range(n):
            a, b = b, a + b
        return a
f = Fib()
f[10] # 89
复制代码


  1. 切片


getitem()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:


class Fib(object):
    def __getitem__(self, n):
        if isinstance(n, int): # n是索引
            a, b = 1, 1
            for x in range(n):
                a, b = b, a + b
            return a
        if isinstance(n, slice): # n是切片
            start = n.start
            stop = n.stop
            step = n.step
            print('step:',step)
            if start is None:
                start = 0
            if step is None:
                step = 1
            a, b = 1, 1
            L = []
            for x in range(stop):
                if x >= start:
                    if(x%step==0):
                        L.append(a)
                a, b = b, a + b
            return L
f=Fib()
print(f[:10]) #  [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 
print(f[:10:2]) # [1, 2, 5, 13, 34]
print(f[10]) # 89
复制代码


__call__


任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。

怎么判断一个变量是对象还是函数呢? 通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。


class Student(object):
    def __init__(self, name):
        self.name = name
    def __call__(self):
        print('My name is %s.' % self.name)
s = Student('Michael')
if callable(s):
    s() # My name is Michael.
复制代码


动态返回一个属性:__getattr__


这个在上篇笔记中有写到《python入门笔记六之面向对象编程

网络异常,图片无法展示
|


class Student(object):
    def __getattr__(self, attr):
        if attr=='age':
            return lambda: 25
        elif attr =='name':
            return 'Amy'
s = Student()
print(s.age()) # 25 注意这里返回的是一个lambda表达式,需要调用该方法才能拿到值
print(s.name) # Amy 
复制代码


链式调用的例子 :


class Chain(object):
    def __init__(self, path=''):
        self._path = path
    def __getattr__(self, path):
        return Chain('%s/%s' % (self._path, path))
    def __call__(self, path):
        return Chain('%s/%s' % (self._path, path))
    def __str__(self):
        return self._path
    __repr__ = __str__
print(Chain().status.user.timeline.list) # /status/user/timeline/list
# 注意这里的chain返回的是chain对象,所以这个users('michael')就可以很好地理解了。
print(Chain().users('michael').repos) # /users/michael/repos
复制代码


使用枚举类:Enum


枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例


from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
for name, member in Month.__members__.items():
    print(name, '=>', member, ',', member.value)
# value属性则是自动赋给成员的int常量,默认从1开始计数。
# Jan => Month.Jan , 1
# Feb => Month.Feb , 2
# Mar => Month.Mar , 3
# .
# .
# .
# Dec => Month.Dec , 12
复制代码


获取枚举常量的两种方式:


  1. 根据成员名称


  1. 根据value值


from enum import Enum, unique
@unique # @unique装饰器可以帮助我们检查保证没有重复值。
class Weekday(Enum):
    Sun = 0 # Sun的value被设定为0
    Mon = 1
    Tue = 2
    Wed = 3
    Thu = 4
    Fri = 5
    Sat = 6
print(Weekday.Mon,'=',Weekday.Mon.value) # Weekday.Mon = 1
print(Weekday['Mon'],'=',Weekday.Mon.value)  # Weekday.Mon = 1
print(Weekday(1),'=',Weekday.Mon.value)  # Weekday.Mon = 1
for name, member in Weekday.__members__.items():
    print(name, '=>', member)
复制代码


小测试: 把gender属性改造为枚举类型,避免使用字符串


class Gender(Enum):
    Male = 0
    Female = 1
class Student(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender
    def __str__(self):
          return 'Student object name={},gender={}'.format(self.name,self.gender)
    __repr__=__str__
bart = Student('Bart', Gender.Male)
print(bart) #  Student object name=Bart,gender=Gender.Male
bart # Student object name=Bart,gender=Gender.Male
复制代码


使用元类


type()


这个也在上篇博文讲到,现在要补充下它的其他知识点


  1. type()函数可以查看一个类型或变量的类型


  1. type()函数既可以返回一个对象的类型,又可以创建出新的类型


网络异常,图片无法展示
|


print(type(str)) # <class 'type'>  str是class,所以类型是type
print(type('123')) # <class 'str'> '123'是实例。所以类型是str
def fn(self, name='world'): # 先定义函数    
    print('Hello, %s.' % name)
复制代码


通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:


要创建一个class对象,type()函数依次传入3个参数:


  1. class的名称;


  1. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法


  1. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。


如图(通过这些ide可以帮助我们更快认识这个函数):


网络异常,图片无法展示
|


def fn(self, name='world'):
    return name
Hello=type('Hello',(object,),dict(hello=fn)) # 创建出Hello类
h=Hello() # 注意这里才去创建Instance实例
print(h.hello('1'))
print(type(Hello)) # <class 'type'>
print(type(h)) # <class '__main__.Hello'>
复制代码


metaclass


除了使用type()动态创建类以外,要控制类的创建行为,还可以使用 metaclassmetaclass是Python面向对象里最难理解,也是最难使用的魔术代码 (已劝退😆 哈哈哈)


大概理解就是它可以定义创建类时候的行为。


# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
    def __new__(cls, name, bases, attrs):
        attrs['add'] = lambda self, value: self.append(value)
        return type.__new__(cls, name, bases, attrs)
class MyList(list, metaclass=ListMetaclass):
    pass
L = MyList()
L.add(1)
L # 1
复制代码


一般写代码的时候用不上,使用metaclass的典型例子是ORM框架(😱老底都揭露出来了)另外再写写这个例子😄



目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
4天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
3天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
15 3
|
4天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
6月前
|
Java 程序员 Python
python学习13-面向对象的三大特征、特殊方法和特殊属性、类的浅拷贝和深拷贝
python学习13-面向对象的三大特征、特殊方法和特殊属性、类的浅拷贝和深拷贝
29.从入门到精通:Python3 面向对象继承 多继承 方法重写 类属性与方法
29.从入门到精通:Python3 面向对象继承 多继承 方法重写 类属性与方法
28.从入门到精通:Python3 面向对象 面向对象技术简介 类定义 类对象 类的方法
28.从入门到精通:Python3 面向对象 面向对象技术简介 类定义 类对象 类的方法
|
Python
python|面向对象-5|类是如何被创建的|初探元类
python|面向对象-5|类是如何被创建的|初探元类
101 0
|
开发者 Python
python|面向对象-3|类的生命周期
python|面向对象-3|类的生命周期
189 0