JavaScript 数据结构与算法 之 排序算法

简介: JavaScript 数据结构与算法 之 排序算法

排序算法

冒泡排序

function bubbleSort(array, compareFn = defaultCompare) {
  const { length } = array;
  for (let i = 0; i < length; i++) {
    for( let j = 0; j < length - 1; j++) {
      if (compareFn(array[j], array[j + 1]) === Compare.BIGGER_THAN) {
        swap(array, j, j + 1);
      }
    }
  }
  return array;
}
function swap(array, a, b) {
  [array[a], array[b]] = [array[b], array[a]];
}

优化,从内循环中减去外循环中已跑过的轮数

function modifiedBubbleSort(array, compareFn = defaultCompare) {
  const { length } = array;
  for (let i = 0; i < array.length; i++) {
    for (let j = 0; j < array.length - 1 - i; j++) {
      if (compareFn(array[j], array[j + 1]) === Compare.BIGGER_THAN) {
        swap(array, j, j + 1);
      }
    }
  }
  return array;
}

优化,设置标志性变量 pos,隐喻记录每趟排序中最后一次进行交换的位置,由于 pos 位置之后的记录均已狡猾到位,所以下一趟排序时,只要扫描到 pos 位置即可

function bubbleSort2(array, compareFn = defaultCompare) {
  let i = array.length - 1; // 初始时,最后位置保持不变
  while (i > 0) {
    let pos = 0; // 每趟开始时,无交换记录
    for (let j = 0; j < i; j++) {
      if (compareFn(array[j], array[j + 1]) === Compare.BIGGER_THAN) {
        pos = j; // 记录交换的位置
        swap(array, j, j + 1);
      }
    }
    i = pos; // 为下一趟排序做准备
  }
  return array;
}

优化,传统冒泡排序中每一趟排序操作只能找到一个最大值或最小值,我们考虑利用在每趟排序中进行正向和反向两遍冒泡的方法一次可以得到两个最终值,从而使排序趟数几乎少了一半。

function bubbleSort3(array, compareFn = defaultCompare) {
  let low = 0;
  let high = array.length - 1;
  let tmp, j;
  while (low < high) {
    for (j = low; j < high; ++j) { // 正向冒泡找到最大者
      if (compareFn(array[j], array[j + 1]) === Compare.BIGGER_THAN) {
        swap(array, j, j + 1);
      }
    }
    --high; // 修改 high 值,前移一位
    for (j = high; j > low; --j) { // 反向冒泡,找到最小者
      if (compareFn(array[j], array[j - 1]) === Compare.LESS_THAN) {
        swap(array, j, j - 1);
      }
    }
    --low;
  }
  return array;
}

选择排序

找到数据结构的最小值并将其放置在第一位,接着找到第二小的并将其放置在第二位,以此类推

function selectionSort(array, compareFn = defaultCompare) {
  const { length } = array;
  let indexMin;
  for (let i = 0; i < length - 1; i++) {
    indexMin = i;
    for (let j = i; j < length; j++) {
      if (compareFn(array[indexMin], array[j]) === Compare.BIGGER_THAN) {
        indexMin = j;
      }
    }
    if (i !== indexMin) {
      swap(array, i, indexMin);
    }
  }
  return array;
};

插入排序

插入排序每次排一个数组项,以此方式构建最后的排序数组。假定第一项已经排序,接着,它和第二项进行比较——第二项是应该待在原位还是插到第一项之前呢?这样,头两项就已正确排序,接着和第三项比较,以此类推

function insertionSort(array, compareFn = defaultCompare) {
  const { length } = array;
  let tmp;
  for (let i = 1; i < length; i++) {
    let j = i;
    tmp = array[i];
    while (j > 0 && compareFn(array[i - 1], tmp) === Compare.BIGGER_THAN) {
      array[j] = array[j - 1];
      j--;
    }
    array[j] = tmp;
  }
  return array;
};
  • 希尔排序
简单插入排序的改进版,优先比较较远距离的元素,也叫缩小增量排序
实现:
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序
  1. 选择一个增量序列t1, t2,...,tk,其中 ti > tj,tk = 1
  2. 按增量序列个数 k,对序列进行 k 趟排序
  3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度
function shellSort(arr) {
  var len = arr.length,
      temp,
      gap = 1;
  // 动态定义间隔序列
  while(gap < len /5) {
    gap = gap * 5 + 1;
  }
  for (gap; gap > 0; gap = Math.floor(gap/5)) {
    for (var i = gap; i < len; i++) {
      temp = arr[i];
      for (var j = i - gap; j >= 0 && arr[j] > temp; j -= gap) {
        arr[j + gap] = arr[j];
      }
      arr[j + gap] = temp;
    }
  }
  return arr;
}

归并排序

归并排序是一种分而治之算法。思想是将原始数据切分成较小的数组,直到每个小数组只有一个位置,接着将 小数组归并成较大的数组,直到最后只有一个排序完毕的大数组。

function mergeSort(array, compareFn = defaultCompare) {
  if (array.length > 1) {
    const { length } = array
    const middle = Math.floor(length / 2);
    const left = mergeSort(array.slice(0, middle), compareFn);
    const right = mergeSort(array.slice(middle, length), compareFn);
    array = merge(left, right, compareFn);
  }
  return array;
}
function merge(left, right, compareFn) {
  let i = 0;
  let j = 0;
  const result = [];
  while (i < left.length && j < right.length) {
    if (compareFn(left[i], right[j]) === Compare.LESS_THAN) {
      result.push(left[i++]);
    } else {
      result.push(right[j++]);
    }
  }
  if (i < left.length) {
    result.concat(left.slice(i));
  } else {
    result.concat(right.slice(j));
  }
  return result;
}

快速排序

步骤

  1. 首先,从数组中选择一个值作为主元,即数组中间那个值
  2. 划分:创建两个指针(引用),左边一个指向数组的第一个值,右边指向数组最后一个值。移动左指针,直到我们找到一个比主元大的值,接着移动右指针直到找到一个比主元小的值,然后交换他们,重复这个过程,直到左指针超过了右指针。这个过程将使得比主元小的值都排在主元之前,比主元大的值都排在主元之后
  3. 算法对划分后的小数组(较主元小的值组成的子数组,以及较主元大的值组成的子数组)重复之前的两个步骤,直至数组已经完全排序。
function quicksort(array, compareFn = defaultCompare) {
  return quick(array, 0, array.length - 1, compareFn);
}
相关文章
|
3月前
|
存储 监控 算法
局域网监控其他电脑的设备信息管理 Node.js 跳表算法
跳表通过分层索引实现O(logn)的高效查询、插入与删除,适配局域网监控中设备动态接入、IP映射及范围筛选等需求,相比传统结构更高效稳定,适用于Node.js环境下的实时设备管理。
152 9
|
5月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
230 0
|
3月前
|
存储 监控 JavaScript
企业上网监控系统的恶意 URL 过滤 Node.js 布隆过滤器算法
布隆过滤器以低内存、高效率特性,解决企业上网监控系统对百万级恶意URL实时检测与动态更新的难题,通过概率性判断实现毫秒级过滤,内存占用降低96%,适配大规模场景需求。
272 3
|
3月前
|
存储 监控 算法
电脑管控软件的进程优先级调度:Node.js 红黑树算法
红黑树凭借O(log n)高效插入、删除与查询特性,适配电脑管控软件对进程优先级动态调度的高并发需求。其自平衡机制保障系统稳定,低内存占用满足轻量化部署,显著优于传统数组或链表方案,是实现关键进程资源优先分配的理想选择。
202 1
|
4月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
286 3
|
8月前
|
Web App开发 数据采集 JavaScript
动态网页爬取:Python如何获取JS加载的数据?
动态网页爬取:Python如何获取JS加载的数据?
1285 58
|
6月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
184 1
|
6月前
|
存储 搜索推荐 算法
加密算法、排序算法、字符串处理及搜索算法详解
本文涵盖四大类核心技术知识。加密算法部分介绍了对称加密(如 AES)、非对称加密(如 RSA)、哈希摘要(如 SHA-2)、签名算法的特点及密码存储方案(加盐、BCrypt 等)。 排序算法部分分类讲解了比较排序(冒泡、选择、插入、归并、快排、堆排序)和非比较排序(计数、桶、基数排序)的时间复杂度、适用场景及实现思路,强调混合排序的工业应用。 字符串处理部分包括字符串反转的双指针法,及项目中用正则进行表单校验、网页爬取、日志处理的实例。 搜索算法部分详解了二分查找的实现(双指针与中间索引计算)和回溯算法的概念(递归 + 剪枝),以 N 皇后问题为例说明回溯应用。内容全面覆盖算法原理与实践
210 0
|
6月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
183 0
|
8月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
212 4