LRU 算法实现

简介: LRU 算法实现

LRU 算法实现


什么是 LRU 算法


LRU是什么?按照英文的直接原义就是Least Recently Used,最近最久未使用法,它是按照一个非常著名的计算机操作系统基础理论得来的:最近使用的页面数据会在未来一段时期内仍然被使用,已经很久没有使用的页面很有可能在未来较长的一段时间内仍然不会被使用。基于这个思想,会存在一种缓存淘汰机制,每次从内存中找到最久未使用的数据然后置换出来,从而存入新的数据!它的主要衡量指标是使用的时间,附加指标是使用的次数。在计算机中大量使用了这个机制,它的合理性在于优先筛选热点数据,所谓热点数据,就是最近最多使用的数据!因为,利用LRU我们可以解决很多实际开发中的问题,并且很符合业务场景。

image.png

LRU 算法的核心思想:在 put 和 get 时,需要将该节点移动到首位置。当超出容量时,需要删除尾节点。

基于双链表法的 LRU 实现:


import java.util.HashMap;
import java.util.Map.Entry;
import java.util.Set;
public class LRUCache<K, V> {
    private int currentCacheSize;
    private int CacheCapcity;
    private HashMap<K,CacheNode> caches;
    private CacheNode first;
    private CacheNode last;
    public LRUCache(int size){
        currentCacheSize = 0;
        this.CacheCapcity = size;
        caches = new HashMap<K,CacheNode>(size);
    }
    public void put(K k,V v){
        CacheNode node = caches.get(k);
        if(node == null){
            if(caches.size() >= CacheCapcity){
                caches.remove(last.key);
                removeLast();
            }
            node = new CacheNode();
            node.key = k;
        }
        node.value = v;
        moveToFirst(node);
        caches.put(k, node);
    }
    public Object  get(K k){
        CacheNode node = caches.get(k);
        if(node == null){
            return null;
        }
        moveToFirst(node);
        return node.value;
    }
    public Object remove(K k){
        CacheNode node = caches.get(k);
        if(node != null){
            // 先断开前面节点的连接,把前一个节点指向当前节点的后一个节点
            if(node.pre != null){
                node.pre.next=node.next;
            }
            // 再断开后面节点的连接,把当前节点的下一个节点指向当前节点的前一个节点
            if(node.next != null){
                node.next.pre=node.pre;
            }
            if(node == first){
                first = node.next;
            }
            if(node == last){
                last = node.pre;
            }
        }
        return caches.remove(k);
    }
    public void clear(){
        first = null;
        last = null;
        caches.clear();
    }
    private void moveToFirst(CacheNode node){
        if(first == node){
            return;
        }
        // 先断开后一个连接,将当前节点的后一个连接指向当前节点的前一个连接
        if(node.next != null){
            node.next.pre = node.pre;
        }
        // 再断开前一个连接,当前节点的前一个节点指向当前节点下一个节点
        if(node.pre != null){
            node.pre.next = node.next;
        }
        if(node == last){
            last= last.pre;
        }
        if(first == null || last == null){
            first = last = node;
            return;
        }
        node.next=first;
        first.pre = node;
        first = node;
        first.pre=null;
    }
    private void removeLast(){
        if(last != null){
            last = last.pre;
            if(last == null){
                first = null;
            }else{
                last.next = null;
            }
        }
    }
    @Override
    public String toString(){
        StringBuilder sb = new StringBuilder();
        CacheNode node = first;
        while(node != null){
            sb.append(String.format("%s:%s ", node.key,node.value));
            node = node.next;
        }
        return sb.toString();
    }
    class CacheNode{
        CacheNode pre;
        CacheNode next;
        Object key;
        Object value;
        public CacheNode(){
        }
    }
    public static void main(String[] args) {
        LRUCache<Integer,String> lru = new LRUCache<Integer,String>(3);
        lru.put(1, "a");    // 1:a
        System.out.println(lru.toString());
        lru.put(2, "b");    // 2:b 1:a 
        System.out.println(lru.toString());
        lru.put(3, "c");    // 3:c 2:b 1:a 
        System.out.println(lru.toString());
        lru.put(4, "d");    // 4:d 3:c 2:b  
        System.out.println(lru.toString());
        lru.put(1, "aa");   // 1:aa 4:d 3:c  
        System.out.println(lru.toString());
        lru.put(2, "bb");   // 2:bb 1:aa 4:d
        System.out.println(lru.toString());
        lru.put(5, "e");    // 5:e 2:bb 1:aa
        System.out.println(lru.toString());
        lru.get(1);         // 1:aa 5:e 2:bb
        System.out.println(lru.toString());
        lru.remove(11);     // 1:aa 5:e 2:bb
        System.out.println(lru.toString());
        lru.remove(1);      //5:e 2:bb
        System.out.println(lru.toString());
        lru.put(1, "aaa");  //1:aaa 5:e 2:bb
        System.out.println(lru.toString());
    }
}


JDK 中 LinkedHashMap 就和 LRUCache 类似, LinkedHashMap 维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。按插入顺序的链表,和按访问顺序(调用get方法)的链表,会调整节点的顺序。主要是因为 LinkedHashMap 实现了 afterNodeInsertion 和 afterNodeAccess ,afterNodeRemoval  方法.


void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMap.Entry<K,V> last;
        if (accessOrder && (last = tail) != e) {
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            if (b == null)
                head = a;
            else
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }

afterNodeInsertion 插入有可能要删除最老的节点

void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry<K,V> first;
        if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);
        }
    }


相关文章
|
6月前
|
算法
操作系统LRU算法(最近最少使用算法)
操作系统LRU算法(最近最少使用算法)
62 0
|
6月前
|
算法 NoSQL Java
Apache Zeppelin系列教程第八篇——LRU算法在Apache Zeppelin中的应用
Apache Zeppelin系列教程第八篇——LRU算法在Apache Zeppelin中的应用
59 0
|
3月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
186 1
|
4月前
|
缓存 算法 前端开发
前端 JS 经典:LRU 缓存算法
前端 JS 经典:LRU 缓存算法
94 0
|
5月前
|
存储 缓存 算法
LRU(Least Recently Used)算法原理
LRU(Least Recently Used)算法原理
65 0
|
6月前
|
缓存 监控 算法
如何调整InnoDB的LRU算法以提高效率?
【5月更文挑战第14天】如何调整InnoDB的LRU算法以提高效率?
66 2
|
6月前
|
存储 缓存 算法
面试遇到算法题:实现LRU缓存
V哥的这个实现的关键在于维护一个双向链表,它可以帮助我们快速地访问、更新和删除最近最少使用的节点,同时使用哈希表来提供快速的查找能力。这样,我们就可以在 O(1) 的时间复杂度内完成所有的缓存操作。哈哈干净利索,回答完毕。
|
6月前
|
缓存 算法 Java
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
|
6月前
|
缓存 算法 前端开发
前端开发者必知的缓存淘汰策略:LRU算法解析与实践
前端开发者必知的缓存淘汰策略:LRU算法解析与实践
203 0
|
6月前
|
缓存 算法 Java
如何实现缓存与LRU算法以及惰性过期
如何实现缓存与LRU算法以及惰性过期
73 1