LRU(Least Recently Used)算法原理

简介: LRU(Least Recently Used)算法原理

LRU(Least Recently Used)算法原理


一、简介

LRU(Least Recently Used)算法是一种常用的缓存淘汰策略,用于管理计算机系统中的缓存。当缓存满时,需要根据一定的策略淘汰掉一些数据,以便为新的数据腾出空间。LRU 算法的基本思想是:最近最少使用的数据最有可能在未来一段时间内不再被使用,因此应该优先淘汰这些数据。


二、原理概述

LRU 算法的核心是维护一个有序的数据结构,按照数据被访问的时间顺序排列。当缓存满时,移除最久未被访问的数据。LRU 算法可以通过多种数据结构实现,常见的有链表和哈希表结合的数据结构。


三、实现方法

3.1 链表实现

  • 使用一个双向链表存储缓存数据,链表的头部是最近访问的数据,尾部是最久未访问的数据。
  • 每次访问某个数据时,将该数据移动到链表头部。
  • 当缓存满时,移除链表尾部的数据。

3.2 链表实现哈希表+双向链表实现

  • 使用哈希表存储缓存中的数据,以便快速查找。
  • 使用双向链表维护访问顺序,链表的头部是最近访问的数据,尾部是最久未访问的数据。
  • 每次访问某个数据时,通过哈希表定位到链表中的节点,并将该节点移动到链表头部。
  • 当缓存满时,移除链表尾部的节点,并在哈希表中删除相应的条目。


四、示例代码

以下是使用哈希表和双向链表实现 LRU 缓存的示例代码:

import java.util.HashMap;

class LRUCache {
    private class Node {
        int key, value;
        Node prev, next;
        Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    private final int capacity;
    private HashMap<Integer, Node> map;
    private Node head, tail;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>();
        head = new Node(0, 0);
        tail = new Node(0, 0);
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            remove(node);
            insertToHead(node);
            return node.value;
        } else {
            return -1;
        }
    }

    public void put(int key, int value) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            remove(node);
        } else if (map.size() == capacity) {
            map.remove(tail.prev.key);
            remove(tail.prev);
        }
        Node node = new Node(key, value);
        insertToHead(node);
        map.put(key, node);
    }

    private void remove(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void insertToHead(Node node) {
        node.next = head.next;
        node.prev = head;
        head.next.prev = node;
        head.next = node;
    }
}

4.1 类定义和成员变量

  • LRUCache 类定义了 LRU 缓存。
  • Node 内部类用于表示双向链表的节点,包含缓存的 key 和 value 以及指向前后节点的指针 prev 和 next。
  • capacity 是缓存的最大容量。
  • map 是哈希表,用于快速查找缓存中的节点。
  • head 和 tail 是双向链表的虚拟头尾节点,方便对链表进行操作。

4.2 构造函数

  • 初始化缓存的容量 capacity。
  • 初始化哈希表 map。
  • 初始化双向链表的虚拟头节点 head 和虚拟尾节点 tail,并将它们连接起来,形成一个空的双向链表。

4.3 获取缓存值

  • get 方法用于获取缓存中的值。
  • 如果 key 存在于哈希表中,获取对应的节点 node,调用 remove 方法将节点从链表中移除,并调用 insertToHead 方法将节点插入链表头部,表示最近使用,然后返回节点的 value。
  • 如果 key 不存在于哈希表中,返回 -1。

4.4 放入缓存值

  • put 方法用于在缓存中插入或更新一个值。
  • 如果 key 已存在于哈希表中,获取对应的节点 node,调用 remove 方法将节点从链表中移除。
  • 如果 key 不存在并且缓存已满,从哈希表中移除最久未使用的节点(即链表尾部节点 tail.prev),并调用 remove 方法将链表尾部节点移除。
  • 创建新的节点 node,调用 insertToHead 方法将新节点插入链表头部,并将新节点添加到哈希表 map 中。

4.5 移除节点

  • remove 方法用于从双向链表中移除一个节点 node。通过调整节点的前后指针,将 node 从链表中断开。

4.6 插入节点到链表头部

insertToHead 方法用于将一个节点 node 插入到双向链表的头部。通过调整指针,将 node 插入到虚拟头节点 head 和原第一个节点之间。


五、性能分析

  • 时间复杂度:LRU 缓存的 get 和 put 操作的时间复杂度都是 O(1),因为哈希表的查找和链表的插入/删除操作都是常数时间复杂度。
  • 空间复杂度:空间复杂度是 O(n),其中 n 是缓存的容量。哈希表和链表的空间开销与缓存的容量成线性关系。

六、优缺点

  • 优点
  • LRU 算法简单易实现。
  • 能够较好地淘汰不常使用的数据,提高缓存的命中率。
  • 缺点
  • 在高并发场景下,链表操作可能会成为性能瓶颈。
  • 维护链表的操作会带来一定的开销。


七、实际应用

LRU 算法广泛应用于各类缓存系统,如操作系统的页面置换、数据库的缓存机制、浏览器的缓存管理等。它有效地提高了系统的性能和资源利用率,是缓存淘汰策略中的经典算法之一。


总结

LRU 算法通过淘汰最近最少使用的数据,维护了缓存的高效性。通过哈希表和双向链表的结合,实现了 O(1) 时间复杂度的缓存操作。尽管在高并发场景下可能存在性能瓶颈,但 LRU 算法仍然是实际应用中最为常用和有效的缓存淘汰策略之一。

目录
相关文章
|
1月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv3的算法原理是怎么样的
YOLOv3的算法原理是怎么样的
|
2天前
|
机器学习/深度学习 算法 BI
机器学习笔记(一) 感知机算法 之 原理篇
机器学习笔记(一) 感知机算法 之 原理篇
|
1天前
|
机器学习/深度学习 数据采集 算法
KNN算法原理及应用(一)
**KNN算法**是一种监督学习的分类算法,适用于解决分类问题。它基于实例学习,无需训练过程,当新样本到来时,通过计算新样本与已有训练样本之间的距离,找到最近的K个邻居,然后根据邻居的类别进行多数表决(或加权表决)来预测新样本的类别。K值的选择、距离度量方式和分类决策规则是KNN的关键要素。KNN简单易懂,但计算复杂度随样本量增加而增加,适用于小规模数据集。在鸢尾花数据集等经典问题上表现良好,同时能处理多分类任务,并可应用于回归和数据预处理中的缺失值填充。
KNN算法原理及应用(一)
|
5天前
|
机器学习/深度学习 算法 Python
【算法】深入浅出爬山算法:原理、实现与应用
【算法】深入浅出爬山算法:原理、实现与应用
12 3
|
9天前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
1天前
|
算法
KNN算法原理及应用(二)
不能将所有数据集全部用于训练,为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个测试集来测试学习器对新样本的判别能力。
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
详解AI作画算法原理
详解AI作画算法原理
35 1
|
3天前
|
机器学习/深度学习 算法 数据可视化
决策树算法:从原理到实践的深度解析
决策树算法:从原理到实践的深度解析
6 0
|
3天前
|
机器学习/深度学习 算法 数据可视化
K-means聚类算法:原理、实例与代码分析
K-means聚类算法:原理、实例与代码分析
10 0
|
1月前
|
机器学习/深度学习 编解码 算法
算法工程师面试问题总结 | YOLOv5面试考点原理全解析
本文给大家带来的百面算法工程师是深度学习目标检测YOLOv5面试总结,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们还将介绍一些常见的深度学习目标检测面试问题,并提供参考的回答及其理论基础,以帮助求职者更好地准备面试。通过对这些问题的理解和回答,求职者可以展现出自己的深度学习目标检测领域的专业知识、解决问题的能力以及对实际应用场景的理解。同时,这也是为了帮助求职者更好地应对深度学习目标检测岗位的面试挑战,提升面试的成功率和竞争力。