LRU(Least Recently Used)算法原理

简介: LRU(Least Recently Used)算法原理

LRU(Least Recently Used)算法原理


一、简介

LRU(Least Recently Used)算法是一种常用的缓存淘汰策略,用于管理计算机系统中的缓存。当缓存满时,需要根据一定的策略淘汰掉一些数据,以便为新的数据腾出空间。LRU 算法的基本思想是:最近最少使用的数据最有可能在未来一段时间内不再被使用,因此应该优先淘汰这些数据。


二、原理概述

LRU 算法的核心是维护一个有序的数据结构,按照数据被访问的时间顺序排列。当缓存满时,移除最久未被访问的数据。LRU 算法可以通过多种数据结构实现,常见的有链表和哈希表结合的数据结构。


三、实现方法

3.1 链表实现

  • 使用一个双向链表存储缓存数据,链表的头部是最近访问的数据,尾部是最久未访问的数据。
  • 每次访问某个数据时,将该数据移动到链表头部。
  • 当缓存满时,移除链表尾部的数据。

3.2 链表实现哈希表+双向链表实现

  • 使用哈希表存储缓存中的数据,以便快速查找。
  • 使用双向链表维护访问顺序,链表的头部是最近访问的数据,尾部是最久未访问的数据。
  • 每次访问某个数据时,通过哈希表定位到链表中的节点,并将该节点移动到链表头部。
  • 当缓存满时,移除链表尾部的节点,并在哈希表中删除相应的条目。


四、示例代码

以下是使用哈希表和双向链表实现 LRU 缓存的示例代码:

import java.util.HashMap;

class LRUCache {
    private class Node {
        int key, value;
        Node prev, next;
        Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    private final int capacity;
    private HashMap<Integer, Node> map;
    private Node head, tail;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>();
        head = new Node(0, 0);
        tail = new Node(0, 0);
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            remove(node);
            insertToHead(node);
            return node.value;
        } else {
            return -1;
        }
    }

    public void put(int key, int value) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            remove(node);
        } else if (map.size() == capacity) {
            map.remove(tail.prev.key);
            remove(tail.prev);
        }
        Node node = new Node(key, value);
        insertToHead(node);
        map.put(key, node);
    }

    private void remove(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void insertToHead(Node node) {
        node.next = head.next;
        node.prev = head;
        head.next.prev = node;
        head.next = node;
    }
}

4.1 类定义和成员变量

  • LRUCache 类定义了 LRU 缓存。
  • Node 内部类用于表示双向链表的节点,包含缓存的 key 和 value 以及指向前后节点的指针 prev 和 next。
  • capacity 是缓存的最大容量。
  • map 是哈希表,用于快速查找缓存中的节点。
  • head 和 tail 是双向链表的虚拟头尾节点,方便对链表进行操作。

4.2 构造函数

  • 初始化缓存的容量 capacity。
  • 初始化哈希表 map。
  • 初始化双向链表的虚拟头节点 head 和虚拟尾节点 tail,并将它们连接起来,形成一个空的双向链表。

4.3 获取缓存值

  • get 方法用于获取缓存中的值。
  • 如果 key 存在于哈希表中,获取对应的节点 node,调用 remove 方法将节点从链表中移除,并调用 insertToHead 方法将节点插入链表头部,表示最近使用,然后返回节点的 value。
  • 如果 key 不存在于哈希表中,返回 -1。

4.4 放入缓存值

  • put 方法用于在缓存中插入或更新一个值。
  • 如果 key 已存在于哈希表中,获取对应的节点 node,调用 remove 方法将节点从链表中移除。
  • 如果 key 不存在并且缓存已满,从哈希表中移除最久未使用的节点(即链表尾部节点 tail.prev),并调用 remove 方法将链表尾部节点移除。
  • 创建新的节点 node,调用 insertToHead 方法将新节点插入链表头部,并将新节点添加到哈希表 map 中。

4.5 移除节点

  • remove 方法用于从双向链表中移除一个节点 node。通过调整节点的前后指针,将 node 从链表中断开。

4.6 插入节点到链表头部

insertToHead 方法用于将一个节点 node 插入到双向链表的头部。通过调整指针,将 node 插入到虚拟头节点 head 和原第一个节点之间。


五、性能分析

  • 时间复杂度:LRU 缓存的 get 和 put 操作的时间复杂度都是 O(1),因为哈希表的查找和链表的插入/删除操作都是常数时间复杂度。
  • 空间复杂度:空间复杂度是 O(n),其中 n 是缓存的容量。哈希表和链表的空间开销与缓存的容量成线性关系。

六、优缺点

  • 优点
  • LRU 算法简单易实现。
  • 能够较好地淘汰不常使用的数据,提高缓存的命中率。
  • 缺点
  • 在高并发场景下,链表操作可能会成为性能瓶颈。
  • 维护链表的操作会带来一定的开销。


七、实际应用

LRU 算法广泛应用于各类缓存系统,如操作系统的页面置换、数据库的缓存机制、浏览器的缓存管理等。它有效地提高了系统的性能和资源利用率,是缓存淘汰策略中的经典算法之一。


总结

LRU 算法通过淘汰最近最少使用的数据,维护了缓存的高效性。通过哈希表和双向链表的结合,实现了 O(1) 时间复杂度的缓存操作。尽管在高并发场景下可能存在性能瓶颈,但 LRU 算法仍然是实际应用中最为常用和有效的缓存淘汰策略之一。

目录
相关文章
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
67 3
|
3月前
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
311 5
|
5天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
33 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
14天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
2月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
1月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
56 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
70 4
|
2月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
95 3

热门文章

最新文章

下一篇
开通oss服务