6个Python办公黑科技,工作效率提升100倍!HR小姐姐都馋哭了(附代码)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 6个Python办公黑科技,工作效率提升100倍!HR小姐姐都馋哭了(附代码)

正文


一、解析PDF(简历内推)


应用场景:简历内推(解析内容:包括不限于姓名、邮箱、电话号码、学历等信息)


输入:要解析的文件路径


输出:需要解析的内容(点我主页,详见历史文章)


环境准备:python 3.6 、mac(下文中doc转docx是mac写法,windows更简单,导入win32的包即可)


依赖包:


# encoding: utf-8
import os, sys
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.layout import LAParams
from pdfminer.converter import PDFPageAggregator


def pdf_reader(file):
    fp = open(file, "rb")
    # 创建一个与文档相关联的解释器
    parser = PDFParser(fp)
    # PDF文档对象
    doc = PDFDocument(parser)
    # 链接解释器和文档对象
    parser.set_document(doc)
    # doc.set_paeser(parser)
    # 初始化文档
    # doc.initialize("")
    # 创建PDF资源管理器
    resource = PDFResourceManager()
    # 参数分析器
    laparam = LAParams()
    # 创建一个聚合器
    device = PDFPageAggregator(resource, laparams=laparam)
    # 创建PDF页面解释器
    interpreter = PDFPageInterpreter(resource, device)
    # 使用文档对象得到页面集合
    res = ''
    for page in PDFPage.create_pages(doc):
        # 使用页面解释器来读取
        interpreter.process_page(page)
        # 使用聚合器来获取内容
        layout = device.get_result()
        for out in layout:
            if hasattr(out, "get_text"):
                res = res + '' + out.get_text()
    return res


二、发送邮件


有几个模块用于访问互联网以及处理网络通信协议。其中最简单的两个是用于处理从 urls 接收的数据的 urllib.request 以及用于发送电子邮件的 smtplib:


import smtplib
smtpObj = smtplib.SMTP( [host [, port [, local_hostname]]] )


参数说明:


host: SMTP 服务器主机。 你可以指定主机的ip地址或者域名如: runoob.com,这个是可选参数。

port: 如果你提供了 host 参数, 你需要指定 SMTP 服务使用的端口号,一般情况下 SMTP 端口号为25。

local_hostname: 如果 SMTP 在你的本机上,你只需要指定服务器地址为 localhost 即可。

Python SMTP 对象使用 sendmail 方法发送邮件,语法如下:


SMTP.sendmail(from_addr, to_addrs, msg[, mail_options, rcpt_options])


参数说明:


from_addr: 邮件发送者地址。

to_addrs: 字符串列表,邮件发送地址。

msg: 发送消息


案例:


#!/usr/bin/python
# -*- coding: UTF-8 -*-
import smtplib
from email.mime.text import MIMEText
from email.header import Header
sender = 'from@runoob.com'
# 西红柿微:ZPYDWXY
receivers = ['1221121@qq.com']  # 接收邮件,可设置为你的QQ邮箱或者其他邮箱
# 三个参数:第一个为文本内容,第二个 plain 设置文本格式,第三个 utf-8 设置编码
message = MIMEText('Python 邮件发送测试...', 'plain', 'utf-8')
message['From'] = Header("不吃西红柿", 'utf-8')   # 发送者
message['To'] =  Header("测试", 'utf-8')        # 接收者
subject = 'Python SMTP 邮件测试'
message['Subject'] = Header(subject, 'utf-8')
try:
    smtpObj = smtplib.SMTP('localhost')
    smtpObj.sendmail(sender, receivers, message.as_string())
    print "邮件发送成功"
except smtplib.SMTPException:
    print "Error: 无法发送邮件"


三、操作execl


1. 关联公式:Vlookup


vlookup是excel几乎最常用的公式,一般用于两个表的关联查询等。所以我先把这张表分为两个表。


#查看订单明细号是否重复,结果是没。
df1["订单明细号"].duplicated().value_counts()
df2["订单明细号"].duplicated().value_counts()
df_c=pd.merge(df1,df2,on="订单明细号",how="left")


2. 数据透视表


需求:想知道每个地区的业务员分别赚取的利润总和与利润平均数。


pd.pivot_table(sale,index="地区名称",columns="业务员名称",values="利润",aggfunc=[np.sum,np.mean])

3. 对比两列差异


需求:比较订单明细号与订单明细号2的差异并显示出来。


sale["订单明细号2"]=sale["订单明细号"]
#在订单明细号2里前10个都+1.
sale["订单明细号2"][1:10]=sale["订单明细号2"][1:10]+1
#差异输出
result=sale.loc[sale["订单明细号"].isin(sale["订单明细号2"])==False]


4. 去除重复值


需求:去除业务员编码的重复值


sale.drop_duplicates("业务员编码",inplace=True)


5. 缺失值处理


#用0填充缺失值
sale["客户名称"]=sale["客户名称"].fillna(0)
#删除有客户编码缺失值的行
sale.dropna(subset=["客户编码"])


6. 多条件筛选


需求:想知道业务员张爱,在北京区域卖的商品订单金额大于6000的信息。


sale.loc[(sale["地区名称"]=="北京")&(sale["业务员名称"]=="张爱")&(sale["订单金额"]>5000)]


7. 模糊筛选数据


需求:筛选存货名称含有"三星"或则含有"索尼"的信息。


sale.loc[sale["存货名称"].str.contains("三星|索尼")]


8. 分类汇总

需求: 北京区域各业务员的利润总额。


sale.groupby(["地区名称","业务员名称"])["利润"].sum()


9. 条件计算


需求:存货名称含“三星字眼”并且税费高于1000的订单有几个?这些订单的利润总和和平均利润是多少?(或者最小值,最大值,四分位数,标注差)


sale.loc[sale["存货名称"].str.contains("三星")&(sale["税费"]>=1000)][["订单明细号","利润"]].describe()


10. 删除数据间的空格


需求:删除存货名称两边的空格。


sale["存货名称"].map(lambda s :s.strip(""))


四、画图分析


英雄联盟防御力:


防御能力最低的英雄(1级): 暗夜猎手,魔法猫咪,万花通灵

防御能力最高的英雄(10级): 正义巨像,披甲龙龟


333.png


安妮、卡尔玛能力矩阵:


333.png


代码示例:


# encoding: utf-8
import json
from pyecharts.charts import Pie
from pyecharts import options as opts
from pyecharts.charts import Radar
def draw_Radar():
    from pyecharts.charts import Radar
    radar = Radar()
    # //由于雷达图传入的数据得为多维数据,所以这里需要做一下处理
    radar_data = [[10, 10, 10, 10, 10]]
    radar_data1 = [[2, 10, 3, 6, 3]]
    radar_data2 = [[1, 8, 7, 5, 8]]
    # //设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同
    schema = [
        ("物理", 100), ("魔法", 10), ("防御", 10),("难度", 10),("喜好", 10)
    ]
    # //传入坐标
    radar.add_schema(schema)
    radar.add("满分", radar_data)
    # //一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
    radar.add("安妮", radar_data1, color="#E37911")
    radar.add("卡尔玛", radar_data2, color="#1C86EE")
    radar.render()
if __name__ == '__main__':
    draw_Radar()


五、解析word(docx、doc)


依赖包:


# encoding: utf-8
import os, sys
import docx


def word_reader(file):
    try:
        # docx 直接读
        if 'docx' in file:
            res = ''
            f = docx.Document(file)
            for para in f.paragraphs:
                res = res + '\n' +para.text
        else:
            # 先转格式doc>docx
            os.system("textutil -convert docx '%s'"%file)
            word_reader(file+'x')
            res = ''
            f = docx.Document(file+'x')
            for para in f.paragraphs:
                res = res + '\n' +para.text
        return res
    except:
        # print(file, 'read failed')
        return ''


六、计算器


math模块为浮点运算提供了对底层函数库的访问:

>>> import math
>>> math.cos(math.pi / 4)
0.70710678118654757
>>> math.log(1024, 2)
10.0


相关文章
|
26天前
|
数据采集 监控 数据挖掘
Python自动化脚本:高效办公新助手###
本文将带你走进Python自动化脚本的奇妙世界,探索其在提升办公效率中的强大潜力。随着信息技术的飞速发展,重复性工作逐渐被自动化工具取代。Python作为一门简洁而强大的编程语言,凭借其丰富的库支持和易学易用的特点,成为编写自动化脚本的首选。无论是数据处理、文件管理还是网页爬虫,Python都能游刃有余地完成任务,极大地减轻了人工操作的负担。接下来,让我们一起领略Python自动化脚本的魅力,开启高效办公的新篇章。 ###
|
10天前
|
Python Windows
Python实现常用办公文件格式转换
本文介绍了如何使用Python及其相关库(如`pandas`、`openpyxl`、`python-docx`等)实现办公文件格式间的转换,包括XLS转XLSX、DOC转DOCX、PPT转PPTX、Word转PDF及PDF转Word,并提供了具体代码示例和注意事项。
140 89
|
3月前
|
Python
Python办公自动化:删除任意页数pdf页面
Python办公自动化:删除任意页数pdf页面
107 1
Python办公自动化:删除任意页数pdf页面
|
3月前
|
Python
Python办公自动化:xlwings对Excel进行分类汇总
Python办公自动化:xlwings对Excel进行分类汇总
103 1
|
3月前
|
数据处理 数据库 Python
我在日常办公中使用python的案例分享
我在日常办公中使用python的案例分享
44 4
|
1月前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
51 1
|
1月前
|
运维 监控 应用服务中间件
自动化运维:如何利用Python脚本提升工作效率
【10月更文挑战第30天】在快节奏的IT行业中,自动化运维已成为提升工作效率和减少人为错误的关键技术。本文将介绍如何使用Python编写简单的自动化脚本,以实现日常运维任务的自动化。通过实际案例,我们将展示如何用Python脚本简化服务器管理、批量配置更新以及监控系统性能等任务。文章不仅提供代码示例,还将深入探讨自动化运维背后的理念,帮助读者理解并应用这一技术来优化他们的工作流程。
|
1月前
|
数据管理 程序员 数据处理
利用Python自动化办公:从基础到实践####
本文深入探讨了如何运用Python脚本实现办公自动化,通过具体案例展示了从数据处理、文件管理到邮件发送等常见办公任务的自动化流程。旨在为非程序员提供一份简明扼要的实践指南,帮助他们理解并应用Python在提高工作效率方面的潜力。 ####
|
3月前
|
数据采集 人工智能 程序员
避坑指南!细说Python自动化办公的5大缺点
Python如今变得愈发流行,不仅程序员,许多非专业人员也开始学习它,主要目的是提高工作效率而非成为专家。然而,Python自动化办公并非完美,存在一些缺点:首先,它仅支持Windows系统,这对Mac用户不太友好;其次,其功能虽强大但不够专业,大多功能一行代码即可完成;再者,代码包体积较大,约200MB;此外,技术门槛较低,难以形成职业优势;最后,相较于专业代码,它的启动速度较慢。即便如此,它依然比人工操作高效得多。如果能接受以上缺点,可参考《50讲·Python自动化办公》教程,快速掌握自动化办公技能。
73 29
|
3月前
|
机器学习/深度学习 人工智能 运维
自动化运维的魔法:如何利用Python脚本提升工作效率
【9月更文挑战第29天】在数字时代的浪潮中,IT运维人员面临着前所未有的挑战和机遇。本文将通过深入浅出的方式,介绍自动化运维的基本概念、核心价值以及使用Python脚本实现自动化任务的方法。我们将从实际案例出发,探讨如何利用Python简化日常的系统管理任务,提高运维效率,并展望自动化运维的未来趋势。无论你是初学者还是有经验的运维专家,这篇文章都将为你开启一扇通往高效工作方式的大门。
64 2
下一篇
DataWorks