线程池的起源
背景: 随着计算机硬件的升级换代,使我们的软件具备多线程执行任务的能力。当我们在进行多线程编程时,就需要创建线程,如果说程序并发很高的话,我们会创建大量的线程,而每个线程执行一个时间很短的任务就结束了,这样频繁创建线程,会极大的降低系统性能,增加服务器开销,因为创建线程和销毁线程都需要额外的消耗。
这时我们就可以借助池化技术,来优化这一缺陷,线程池就诞生了。
池化技术的本质是在高并发场景下,为了实现资源复用,减少资源创建销毁等开销,如果并发数很小没有明显优势(资源一直占用系统内存,没有机会被使用)。
池化技术介绍: 什么时池化技术呢?池化技术是一种编程技巧,当程序出现高并发时,能够明显的优化程序,降低系统频繁创建销毁连接等额外开销。我们经常接触到的池化技术有数据库连接池、线程池、对象池等等。池化技术的特点是将一些高成本的资源维护在一个特定的池子(内存)中,规定其最小连接数、最大连接数、阻塞队列,溢出规则等配置,方便统一管理。一般情况下也会附带一些监控,强制回收等配套功能。
池化技术作为一种资源使用技术,典型的使用情形是:
- 获取资源的成本较高的时候
- 请求资源的频率很高且使用资源总数较低的时候
- 面对性能问题,涉及到处理时间延迟的时候
池化技术资源分类:
- 系统调用的系统资源,如线程、进程、内存分配等
- 网络通信的远程资源, 如数据库连接、套接字连接等
线程池的定义和使用
线程池是我们为了规避创建线程,销毁线程额外开销而诞生的,所以说我们定义创建好线程池之后,就不需要自己来创建线程,而是使用线程池调用执行我们的任务。下面我们一起看一下如何定义并创建线程池。
方案一:Executors(仅做了解,推荐使用方案二)
创建线程池可以使用Executors,其中提供了一系列工厂方法用于创建线程池,返回的线程池都实现了ExecutorService接口。
ExecutorService 接口是Executor接口的子类接口,使用更为广泛,其提供了线程池生命周期管理的方法,返回 Future 对象。
也就是说我们通过Executors创建线程池,得到ExecutorService,通过ExecutorService执行异步任务(实现Runnable接口)
Executors 可以创建一下几种类型的线程池:
- newCachedThreadPool 创建一个可缓存线程池,如果线程池线程数量过剩,会在60秒后回收掉多余线程资源,当任务书增加,线程不够用,则会新建线程。
- newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
- newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
- newSingleThreadExecutor 创建一个单线程的线程池,只使用唯一的线程来执行任务,可以保证任务按照提交顺序来完成。
方案二:ThreadPoolExecutor
在阿里巴巴开发规范中,规定线程池不允许通过Executors创建,而是通过ThreadPoolExecutor创建。
好处:让写的同学可以更加明确线程池的运行规则,规避资源耗尽的风险。
ThreadPoolExecutor的七大参数:
- corePoolSize 核心线程数量,核心线程会一直保留,不会被销毁。
- maximumPoolSize 最大线程数,当核心线程不能满足任务需要时,系统就会创建新的线程来执行任务。
- keepAliveTime 存活时间,核心线程之外的线程空闲多长时间就会被销毁。
- timeUnit 代表线程存活的时间单位。
- BlockingQueue 阻塞队列
如果正在执行的任务超过了最大线程数,可以存放在队列中,当线程池中有空闲资源就可以从队列中取出任务继续执行。
队列类型有如下几种类型:LinkedBlockingQueue ArrayBlockingQueue SynchronousQueue TransferQueue。
- threadFactory 线程工厂,用来创建线程的,可以自定义线程,比如我们可以定义线程组名称,在jstack问题排查时,非常有帮助。
rejectedExecutionHandler 拒绝策略,
当所有线程(最大线程数)都在忙,并且任务队列处于满任务的状态,则会执行拒绝策略。
JDK为我们提供了四种拒绝策略,我们必须都得熟悉
- AbortPolicy: 丢弃任务,并抛出异常RejectedExecutionException。 默认
- DiscardPolicy: 丢弃最新的任务,不抛异常。
- DiscardOldestPolicy: 扔掉排队时间最久的任务,也就是最旧的任务。
- CallerRuns: 由调用者(提交异步任务的线程)处理任务。
线程池的实现原理
想要实现一个线程池我们就需要关心ThreadPoolExecutor类,因为Executors创建线程池也是通过new ThreadPoolExecutor对象。
看一下ThreadPoolExecutor的类继承关系,可以看出为什么通过Executors创建的线程池返回结果是ExecutorService,因为ThreadPoolExecutor是ExecutorService接口的实现类,而Executors创建线程池本质也是创建的ThreadPoolExecutor 对象。
下面我们一起看一下ThreadPoolExecutor的源码,首先是ThreadPoolExecutor内定义的变量,常量:
// 复合类型变量 是一个原子整数 控制状态(运行状态|线程池活跃线程数量)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3; // 低29位
private static final int CAPACITY = (1 << COUNT_BITS) - 1; // 容量
// 运行状态存储在高位3位
private static final int RUNNING = -1 << COUNT_BITS; // 接受新任务,并处理队列任务
private static final int SHUTDOWN = 0 << COUNT_BITS; // 不接受新任务,但会处理队列任务
private static final int STOP = 1 << COUNT_BITS; // 不接受新任务,不会处理队列任务,中断正在处理的任务
private static final int TIDYING = 2 << COUNT_BITS; // 所有的任务已结束,活跃线程为0,线程过渡到TIDYING状 态,将会执行terminated()钩子方法
private static final int TERMINATED = 3 << COUNT_BITS; // terminated()方法已经完成
// 设置 ctl 参数方法
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
/**
* 阻塞队列
*/
private final BlockingQueue<Runnable> workQueue;
/**
* Lock 锁.
*/
private final ReentrantLock mainLock = new ReentrantLock();
/**
* 工人们
*/
private final HashSet<Worker> workers = new HashSet<Worker>();
/**
* 等待条件支持等待终止
*/
private final Condition termination = mainLock.newCondition();
/**
* 最大的池大小.
*/
private int largestPoolSize;
/**
* 完成任务数
*/
private long completedTaskCount;
/**
* 线程工厂
*/
private volatile ThreadFactory threadFactory;
/**
* 拒绝策略
*/
private volatile RejectedExecutionHandler handler;
/**
* 存活时间
*/
private volatile long keepAliveTime;
/**
* 允许核心线程数
*/
private volatile boolean allowCoreThreadTimeOut;
/**
* 核心线程数
*/
private volatile int corePoolSize;
/**
* 最大线程数
*/
private volatile int maximumPoolSize;
/**
* 默认拒绝策略
*/
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
/**
* shutdown and shutdownNow权限
*/
private static final RuntimePermission shutdownPerm =
new RuntimePermission("modifyThread");
构造器,,支持最少五种参数,最大七中参数的四种构造器:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler);
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
工人,线程池中执行任务的,线程池就是通过这些工人进行工作的,有核心员工(核心线程)和临时工(人手不够的时候,临时创建的,如果空闲时间厂,就会被裁员),
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
private static final long serialVersionUID = 6138294804551838833L;
// 工人的本质就是个线程
final Thread thread;
// 第一件工作任务
Runnable firstTask;
volatile long completedTasks;
/**
* 构造器
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** 工作 */
public void run() {
runWorker(this);
}
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
核心方法,通过线程池执行任务(这也是线程池的运行原理)
- 检验任务
- 获取当前线程池状态
- 判断上班工人数量是否小于核心员工数
- 如果小于则招人,安排工作
- 不小于则判断等候区任务是否排满
- 如果没有排满则任务排入等候区
- 如果排满,看是否允许招人,允许招人则招临时工
- 如果都不行,该线程池无法接收新任务,开始按老板约定的拒绝策略,执行拒绝策略
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
submit()方法是其抽象父类定义的,这里我们就可以明显看到submit与execute的区别,通过submit调用,我们会创建RunnableFuture,并且会返回Future,这里我们可以将返回值类型,告知submit方法,它就会通过泛型约束返回值。
public abstract class AbstractExecutorService implements ExecutorService {
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
...
}
addWorker()是招人的一个方法
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 判断状态,及任务列表
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
获取任务的方法
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
让员工干活的方法,分配任务,运行任务
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}