剑指 Offer 16. 数值的整数次方

简介: 实现 pow(x, n) ,即计算 x 的 n 次幂函数(即, x^n)。不得使用库函数,同时不需要考虑大数问题。


⭐️题目来源



实现 pow(x, n) ,即计算 x 的 n 次幂函数(即, x^n)。不得使用库函数,同时不需要考虑大数问题。


示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000


示例 2:

输入:x = 2.10000, n = 3
输出:9.26100


示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25


提示:

-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104


方法一:直接求解(超出时间限制)



最简单的方法就是让n个x相乘,但这样会超出时间限制,而且我写的很冗余—!!!!

double myPow(double x, int n){
    double t = 1.0; int i = n;
    if (x > 0)
    {
        if (n > 0)
        {
            for (i = 0; i < n; i++)
            {
                t *= x;
            }
        }
        else if (n == 0)
        {
            t = 1;
        }
        else
        {
            for (i = 0; i < -n; i++)
            {
                t /= x;
            }
        }
    }
    else if (x == 0)
    {
        t = 0;
    }
    else
    {
        if (n > 0)
        {
            for (i = 0; i < n; i++)
            {
                t *= x;
            }
        }
        else if (n == 0)
        {
            t = 1;
        }
        else
        {
            for (i = 0; i < -n; i++)
            {
                t /= x;
            }
        }
    }
    return t;
}

b2bdde64f25d4870b80c1878adea5bac.png


方法二:使用递归(执行用时:0 ms 内存消耗:5.3 MB)



算法


算法流程:


n=0时,任何x都返回1

n=1时,返回x

n=-1时,返回1/x

对于其他n值:


1.1 当n为偶数时,myPow(x,n) = myPow(x,n/2)* myPow(x,n/2)

1.2 当n为奇数时:myPow(x,n) = myPow(x,(n-1)/2) * myPow(x,(n-1)/2) * x

递归时先用一个变量取得myPow(x,n/2)的值再平方,可以降低时间复杂度(减少递归调用的次数)

double myPow(double x, int n){
    double t=1;
    if(n==0)return 1;
    else if(n==1)return x;
    else if(n==-1)return 1/x;
    else
    {
        if(n%2==0)
        {
            t=myPow(x,n/2)*myPow(x,n/2);
        }
        else
        {
           t=x*myPow(x,(n-1)/2)*myPow(x,(n-1)/2);
        }
    }
    return t;
}

387e3dde51b64ff6ab881c59e675a3f4.png


方法三:二分思想(执行用时:0 ms 内存消耗:5.3 MB)



通过二分的思想,我们可以通过x = x^2的操作将幂指数n降低至n/2,直到n=0为止。这样相比于一次一次乘效率提高了不少,因为使用单次累乘每进行一次幂指数n降低至n-1,而二分累乘幂指数n降低至n/2。


既然是对幂指数n除2操作,那不得不考虑这个n是奇数还是偶数,如果n为偶数,x^n =x^ (2)n/2;如果n为奇数xn =x*x^ (2)(n-1)/2

e728550a71fc4cd8991bb0a0f055bdff.jpg

double myPow(double x, int n){
    int i = 0;
    double ret = 1.0;
    long m = n;//如果n为最小负数,对n取绝对值后会溢出,所以需要long型变量来储存
    if (x == 1 || n == 0)
        return 1.0;
    if (x == 0)
        return 0;
    if (n < 0)
    {
        m = -m;
        x = 1 / x;
    }
    while (m)
    {
        if (m & 1)
        {
            ret *= x;//如果n为奇数,对结果补乘一个x;如2的5次方可以转换成4的2次方再乘2
        }
        m >>=  1;
        x *= x;
    }
    return ret;
}

6bb6bcc68e1f4697aecb3783647f1864.png

对于上述while循环的代码我初看的时候其实没有看懂,但我自己举了一个例子之后发现就清晰很多了,如果大家不明白的话也可以自己动手举例子!

42351d0942bb472aa55b807e9d32c691.jpg



相关文章
|
9天前
|
数据采集 人工智能 安全
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
307 164
|
3天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
318 155
|
12天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
873 6
|
5天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
260 113

热门文章

最新文章