动手学深度学习(五) 梯度消失、梯度爆炸(下)

简介: 动手学深度学习(五) 梯度消失、梯度爆炸(下)

Kaggle 房价预测实战



作为深度学习基础篇章的总结,我们将对本章内容学以致用。下面,让我们动手实战一个Kaggle比赛:房价预测。本节将提供未经调优的数据的预处理、模型的设计和超参数的选择。我们希望读者通过动手操作、仔细观察实验现象、认真分析实验结果并不断调整方法,得到令自己满意的结果。

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
torch.set_default_tensor_type(torch.FloatTensor)

1.3.0


获取和读取数据集


比赛数据分为训练数据集和测试数据集。两个数据集都包括每栋房子的特征,如街道类型、建造年份、房顶类型、地下室状况等特征值。这些特征值有连续的数字、离散的标签甚至是缺失值“na”。只有训练数据集包括了每栋房子的价格,也就是标签。我们可以访问比赛网页,点击“Data”标签,并下载这些数据集。


我们将通过pandas库读入并处理数据。在导入本节需要的包前请确保已安装pandas库。


假设解压后的数据位于/home/kesci/input/houseprices2807/目录,它包括两个csv文件。下面使用pandas读取这两个文件。

test_data = pd.read_csv("/home/kesci/input/houseprices2807/house-prices-advanced-regression-techniques/test.csv")
train_data = pd.read_csv("/home/kesci/input/houseprices2807/house-prices-advanced-regression-techniques/train.csv")


训练数据集包括1460个样本、80个特征和1个标签。

train_data.shape

(1460, 81)


测试数据集包括1459个样本和80个特征。我们需要将测试数据集中每个样本的标签预测出来。

test_data.shape

(1459, 80)


让我们来查看前4个样本的前4个特征、后2个特征和标签(SalePrice):

train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]


50.png


可以看到第一个特征是Id,它能帮助模型记住每个训练样本,但难以推广到测试样本,所以我们不使用它来训练。我们将所有的训练数据和测试数据的79个特征按样本连结。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))


预处理数据


我们对连续数值的特征做标准化(standardization):设该特征在整个数据集上的均值为,标准差为。那么,我们可以将该特征的每个值先减去再除以得到标准化后的每个特征值。对于缺失的特征值,我们将其替换成该特征的均值。

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))
# 标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
all_features[numeric_features] = all_features[numeric_features].fillna(0)


接下来将离散数值转成指示特征。举个例子,假设特征MSZoning里面有两个不同的离散值RL和RM,那么这一步转换将去掉MSZoning特征,并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。如果一个样本原来在MSZoning里的值为RL,那么有MSZoning_RL=1且MSZoning_RM=0。

# dummy_na=True将缺失值也当作合法的特征值并为其创建指示特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape

(2919, 331)


可以看到这一步转换将特征数从79增加到了331。

最后,通过values属性得到NumPy格式的数据,并转成Tensor方便后面的训练。

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)


训练模型

loss = torch.nn.MSELoss()
def get_net(feature_num):
    net = nn.Linear(feature_num, 1)
    for param in net.parameters():
        nn.init.normal_(param, mean=0, std=0.01)
    return net


下面定义比赛用来评价模型的对数均方根误差。给定预测值和对应的真实标签,它的定义为



对数均方根误差的实现如下。

def log_rmse(net, features, labels):
    with torch.no_grad():
        # 将小于1的值设成1,使得取对数时数值更稳定
        clipped_preds = torch.max(net(features), torch.tensor(1.0))
        rmse = torch.sqrt(2 * loss(clipped_preds.log(), labels.log()).mean())
    return rmse.item()


下面的训练函数跟本章中前几节的不同在于使用了Adam优化算法。相对之前使用的小批量随机梯度下降,它对学习率相对不那么敏感。我们将在之后的“优化算法”一章里详细介绍它。

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
    # 这里使用了Adam优化算法
    optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay) 
    net = net.float()
    for epoch in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X.float()), y.float())
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls


K折交叉验证


我们在模型选择、欠拟合和过拟合中介绍了折交叉验证。它将被用来选择模型设计并调节超参数。下面实现了一个函数,它返回第i折交叉验证时所需要的训练和验证数据。

def get_k_fold_data(k, i, X, y):
    # 返回第i折交叉验证时所需要的训练和验证数据
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat((X_train, X_part), dim=0)
            y_train = torch.cat((y_train, y_part), dim=0)
    return X_train, y_train, X_valid, y_valid


折交叉验证中我们训练次并返回训练和验证的平均误差

def k_fold(k, X_train, y_train, num_epochs,
           learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net(X_train.shape[1])
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k


模型选择


我们使用一组未经调优的超参数并计算交叉验证误差。可以改动这些超参数来尽可能减小平均测试误差。


有时候你会发现一组参数的训练误差可以达到很低,但是在折交叉验证上的误差可能反而较高。这种现象很可能是由过拟合造成的。因此,当训练误差降低时,我们要观察折交叉验证上的误差是否也相应降低。

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))

fold 0, train rmse 0.241365, valid rmse 0.223083
fold 1, train rmse 0.229118, valid rmse 0.267488
fold 2, train rmse 0.232072, valid rmse 0.237995
fold 3, train rmse 0.238050, valid rmse 0.218671
fold 4, train rmse 0.231004, valid rmse 0.259185
5-fold validation: avg train rmse 0.234322, avg valid rmse 0.241284


51.png


预测并在Kaggle中提交结果



下面定义预测函数。在预测之前,我们会使用完整的训练数据集来重新训练模型,并将预测结果存成提交所需要的格式。

def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net(train_features.shape[1])
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    preds = net(test_features).detach().numpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('./submission.csv', index=False)
    # sample_submission_data = pd.read_csv("../input/house-prices-advanced-regression-techniques/sample_submission.csv")


设计好模型并调好超参数之后,下一步就是对测试数据集上的房屋样本做价格预测。如果我们得到与交叉验证时差不多的训练误差,那么这个结果很可能是理想的,可以在Kaggle上提交结果。

train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)


希望大家自己动手完成房价预测的实现,多参与讨论。

相关文章
|
1月前
|
机器学习/深度学习 算法
深度学习中的自适应抱团梯度下降法
【10月更文挑战第7天】 本文探讨了深度学习中一种新的优化算法——自适应抱团梯度下降法,它结合了传统的梯度下降法与现代的自适应方法。通过引入动态学习率调整和抱团策略,该方法在处理复杂网络结构时展现了更高的效率和准确性。本文详细介绍了算法的原理、实现步骤以及在实际应用中的表现,旨在为深度学习领域提供一种创新且有效的优化手段。
|
1月前
|
机器学习/深度学习 Python
深度学习笔记(六):如何运用梯度下降法来解决线性回归问题
这篇文章介绍了如何使用梯度下降法解决线性回归问题,包括梯度下降法的原理、线性回归的基本概念和具体的Python代码实现。
64 0
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习中的梯度消失与梯度爆炸问题解析
【8月更文挑战第31天】深度学习模型在训练过程中常常遇到梯度消失和梯度爆炸的问题,这两个问题严重影响了模型的收敛速度和性能。本文将深入探讨这两个问题的原因、影响及解决策略,并通过代码示例具体展示如何在实践中应用这些策略。
|
4月前
|
机器学习/深度学习 算法
现代深度学习框架构建问题之tinyDL中机器学习的通用组件与深度学习如何解决
现代深度学习框架构建问题之tinyDL中机器学习的通用组件与深度学习如何解决
88 2
|
5月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:策略梯度方法
使用Python实现深度学习模型:策略梯度方法
53 0
|
5月前
|
机器学习/深度学习 决策智能
**批量归一化(BN)**是2015年提出的深度学习优化技术,旨在解决**内部协变量偏移**和**梯度问题**。
【6月更文挑战第28天】**批量归一化(BN)**是2015年提出的深度学习优化技术,旨在解决**内部协变量偏移**和**梯度问题**。BN通过在每个小批量上执行**标准化**,然后应用学习到的γ和β参数,确保层间输入稳定性,加速训练,减少对超参数的敏感性,并作为隐含的正则化手段对抗过拟合。这提升了模型训练速度和性能,简化了初始化。
52 0
|
5月前
|
机器学习/深度学习 算法 网络架构
**深度学习中的梯度消失与爆炸影响模型训练。梯度消失导致输入层参数更新缓慢,梯度爆炸使训练不稳。
【6月更文挑战第28天】**深度学习中的梯度消失与爆炸影响模型训练。梯度消失导致输入层参数更新缓慢,梯度爆炸使训练不稳。解决办法包括:换激活函数(如ReLU)、权重初始化、残差连接、批量归一化(BN)来对抗消失;梯度裁剪、权重约束、RMSProp或Adam优化器来防止爆炸。这些策略提升网络学习能力和收敛性。**
58 0
|
9天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
40 9
|
5天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
6天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。