ACM模版——Manacher(最长回文子串)算法

简介: ACM模版——Manacher(最长回文子串)算法

注释版:

#include<bits/stdc++.h>
#include<cmath>
#define mem(a,b) memset(a,b,sizeof a)
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn=100100;
char a[maxn*2]; // $ # s[]
int b[maxn*2]; // RL[]
// 时间复杂度 O(n)
int manacher(char s[])
{
    int rs=-1;
    int len=strlen(s);
    int k=0;
    a[k++]='$';
    a[k++]='#';
    for(int i=0;i<len;i++)
        a[k++]=s[i],a[k++]='#';
    a[k]=0; // '\0'
    // 以上预处理,如:abba ---> $#a#b#b#a#'\0' (从0开始)
    // 表示当前访问到的所有回文子串,所能触及的最右一个字符的位置+1(即:最右边一个回文字符串的下一个位置)
    // mxr 对应的回文串的对称轴所在的位置,记为pos
    int mxr=0,pos=0;
    for(int i=0;i<k;i++)
    {
        /*
         从左往右地访问字符串来求RL[](b[]),假设当前访问到的位置为i,即要求RL[i],i必然是在po右边的
         但我们更关注的是,i是在MaxRight(mxr)的左边还是右边。我们分情况来讨论:
         1、当i在MaxRight的左边:
              以pos为对称轴,记右边边界为mxr,左边边界为mxl,(mxl,mxr)区间(注意:不包括mxl、mxr)的串是回文的;
              并且以当前 i 为对称轴的回文串,是与(mxl,mxr)区间的回文串有所重叠的。
              找到i关于pos的对称位置j,这个j对应的RL[j]前面是已经算过的。
              根据回文串的对称性,以i为对称轴的回文串和以j为对称轴的回文串,有一部分是相同的。
              这里又有两种细分的情况:
                  (1)、以j为对称轴的回文串比较短,短到没有超过边界mxl:
                          这时我们知道RL[i]至少不会小于RL[j],并且已经知道了部分的以i为中心的回文串,于是可以令RL[i]=RL[j]。
                          但是以i为对称轴的回文串可能实际上更长,因此我们试着以i为对称轴,继续往左右两边扩展,直到左右两边字符不同,或者到达边界。
                  (2)、以j为对称轴的回文串很长,长到超过了边界mxl:
                          这时,我们只能确定,以i为对称轴,半径小于mxr的部分是回文的,于是从这个长度开始,尝试以i为中心向左右两边扩展,直到左右两边字符不同,或者到达边界。
         2、当i在MaxRight的右边或者重合(i==mxr):
              遇到这种情况,说明以i为对称轴的回文串还没有任何一个部分被访问过,于是只能从i的左右两边开始尝试扩展了,当左右两边字符不同,或者到达字符串边界时停止。然后更新MaxRight和pos。
         参数说明:
              b[2*pos-i]:1-(1),补充数学公式:(i+j)/2==pos
                   mxr-i:1-(2)
                       1:2
        */
        b[i]=mxr>i?min(b[2*pos-i],mxr-i):1;
        while(a[i+b[i]]==a[i-b[i]]) // 无需处理边界问题,因为我们一开始预处理 $、'\0'
            b[i]++;
        if(i+b[i]>mxr) // 不论以上哪种情况,之后都要尝试更新 mxr 和 pos,因为有可能得到更大的 mxr。
            mxr=i+b[i],pos=i;
        rs=max(rs,b[i]-1); // 更新最长回文串的长度
    }
    return rs;
}
int main()
{
    char s[maxn];
    while(gets(s))
    {
        printf("%d\n",manacher(s));
    }
    return 0;
}

简化版:

#include<bits/stdc++.h>
#include<cmath>
#define mem(a,b) memset(a,b,sizeof a)
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn=100100;
char a[maxn*2];
int b[maxn*2];
int manacher(char s[])
{
    int rs=-1;
    int len=strlen(s);
    int k=0;
    a[k++]='$';
    a[k++]='#';
    for(int i=0;i<len;i++)
        a[k++]=s[i],a[k++]='#';
    a[k]=0;
    int mxr=0,pos=0;
    for(int i=0;i<k;i++)
    {
        b[i]=mxr>i?min(b[2*pos-i],mxr-i):1;
        while(a[i+b[i]]==a[i-b[i]])
            b[i]++;
        if(i+b[i]>mxr)
            mxr=i+b[i],pos=i;
        rs=max(rs,b[i]-1);
    }
    return rs;
}
int main()
{
    char s[maxn];
    while(gets(s))
    {
        printf("%d\n",manacher(s));
    }
    return 0;
}


目录
相关文章
|
7月前
|
算法
【算法沉淀】最长回文子串
【算法沉淀】最长回文子串
|
7月前
|
算法
LeetCode算法题---最长回文子串、N 字形变换(四)
LeetCode算法题---最长回文子串、N 字形变换(四)
43 0
|
存储 算法 搜索推荐
标准模版库 知识点总结 C++程序设计与算法笔记总结(八) 北京大学 郭炜(下)
标准模版库 知识点总结 C++程序设计与算法笔记总结(八) 北京大学 郭炜(下)
74 0
|
存储 算法 C++
标准模版库 知识点总结 C++程序设计与算法笔记总结(八) 北京大学 郭炜(上)
标准模版库 知识点总结 C++程序设计与算法笔记总结(八) 北京大学 郭炜(上)
56 0
|
4月前
|
算法
Manacher(马拉车)算法详解
该文章详细解释了Manacher算法,这是一种高效找出给定字符串最长回文子串的算法,通过在字符串中插入特殊字符构建新的字符串,并利用中心扩展策略来找出最长回文序列,时间复杂度为O(N),空间复杂度为O(N)。
|
7月前
|
算法 搜索推荐 程序员
第六十六练 最长回文子串 - Manacher算法
第六十六练 最长回文子串 - Manacher算法
43 0
|
7月前
|
算法 C#
Leetcode算法系列| 5. 最长回文子串
Leetcode算法系列| 5. 最长回文子串
|
7月前
|
存储 算法 程序员
【算法训练-字符串 一】【子串问题】最长无重复子串、最长回文子串、最长公共前缀
【算法训练-字符串 一】【子串问题】最长无重复子串、最长回文子串、最长公共前缀
74 0
|
机器学习/深度学习 存储 算法
【力扣算法08】之 5. 最长回文子串 python
【力扣算法08】之 5. 最长回文子串 python
142 0
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80