【人工智能】机器学习及与智能数据处理之降维算法PCA及其应用手写字体识别以及【自定义数据集】

本文涉及的产品
票据凭证识别,票据凭证识别 200次/月
车辆物流识别,车辆物流识别 200次/月
教育场景识别,教育场景识别 200次/月
简介: 利用PCA算法实现手写字体识别,要求: 1、实现手写数字数据集的降维; 2、比较两个模型(64维和10维)的准确率; 3、对两个模型分别进行10次10折交叉验证,绘制评分对比曲线。

降维算法PCA及其应用

利用PCA算法实现手写字体识别,要求:

1、实现手写数字数据集的降维;

2、比较两个模型(64维和10维)的准确率;

3、对两个模型分别进行10次10折交叉验证,绘制评分对比曲线。

实验步骤

1. 导入数据集

from sklearn.datasets import load_digits
digits = load_digits()
train = digits.data
target = digits.target

2. 实现手写数字数据集的降维;

pca = PCA(n_components=10,whiten=True)
pca.fit(x_train,y_train)
x_train_pca = pca.transform(x_train)
x_test_pca = pca.transform(x_test)

3. 比较两个模型(64维和10维)的准确率;

64维

svc = SVC(kernel = 'rbf')
svc.fit(x_train,y_train)
y_predict = svc.predict(x_test)
print('The Accuracy of SVC is', svc.score(x_test, y_test))
print("classification report of SVC\n",classification_report(y_test, y_predict,
target_names=digits.target_names.astype(str)))

10维

svc = SVC(kernel = 'rbf')
svc.fit(x_train_pca,y_train)
y_pre_svc = svc.predict(x_test_pca)
print("The Accuracy of PCA_SVC is ", svc.score(x_test_pca,y_test))
print("classification report of PCA_SVC\n", classification_report(y_test, y_pre_svc,
target_names=digits.target_names.astype(str)))

4. 对两个模型分别进行10次10折交叉验证,绘制评分对比曲线。

for i in range(100):
    # 创建子图
    plt.subplot(10,10,i+1)
    # 显示灰度图像
    plt.imshow(samples[i].reshape(8,8),cmap='gray')
    title = str(y_pre[i])
    plt.title(title,color='red')
    # 关闭坐标轴
    plt.axis('off')
plt.show()

代码详解

import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
digits = load_digits()
train = digits.data
target = digits.target
x_train,x_test,y_train,y_test = train_test_split(train,target,test_size=0.2,random_state=33)
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.transform(x_test)
svc = SVC(kernel = 'rbf')
svc.fit(x_train,y_train)
y_predict = svc.predict(x_test)
print('The Accuracy of SVC is', svc.score(x_test, y_test))
print("classification report of SVC\n",classification_report(y_test, y_predict,
target_names=digits.target_names.astype(str)))
# 实现手写数字数据集的降维实现手写数字数据集的降维
pca = PCA(n_components=10,whiten=True)
pca.fit(x_train,y_train)
x_train_pca = pca.transform(x_train)
x_test_pca = pca.transform(x_test)
svc = SVC(kernel = 'rbf')
svc.fit(x_train_pca,y_train)
# 比较两个模型(64维和10维)的准确率
y_pre_svc = svc.predict(x_test_pca)
print("The Accuracy of PCA_SVC is ", svc.score(x_test_pca,y_test))
print("classification report of PCA_SVC\n", classification_report(y_test, y_pre_svc,
target_names=digits.target_names.astype(str)))
samples = x_test[:100]
y_pre = y_pre_svc[:100]
plt.figure(figsize=(12,38))
# 对两个模型分别进行10次10折交叉验证,绘制评分对比曲线
for i in range(100):
    plt.subplot(10,10,i+1)
    plt.imshow(samples[i].reshape(8,8),cmap='gray')
    title = str(y_pre[i])
    plt.title(title)
    plt.axis('off')
plt.show()

结果:

在这里插入图片描述

SVC

在这里插入图片描述

PCA

在这里插入图片描述

降维算法PCA及其应用手写识别【自定义数据集】

利用PCA算法实现手写字体识别,要求:

1、实现手写数字数据集的降维;

2、比较两个模型(64维和10维)的准确率;

3、对两个模型分别进行10次10折交叉验证,绘制评分对比曲线。

实验步骤

1. 导入自定义数据集

可以事先下载,也可以联网下载!
下载地址:

http://deeplearning.net/data/mnist/

保存如下:
在这里插入图片描述

from pathlib import Path
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
# 如果未下载,则创建目录下载数据
if not (PATH / FILENAME).exists():
    content = requests.get(URL + FILENAME).content
    (PATH / FILENAME).open("wb").write(content)
# 读取数据集
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
    ((x_train, y_train), (x_test, y_test), _) = pickle.load(f, encoding="latin-1")
x_train = x_train[:5000,:]
y_train = y_train[:5000,]
x_test = x_test[:360,:]
y_test = y_test[:360,]

其他步骤和上一个相同【人工智能之手写字体识别】机器学习及与智能数据处理之降维算法PCA及其应用手写字体识别

代码详解

import matplotlib.pyplot as plt
from pathlib import Path
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
import requests
import pickle
import gzip
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():
    content = requests.get(URL + FILENAME).content
    (PATH / FILENAME).open("wb").write(content)
# 读取数据集
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
    ((x_train, y_train), (x_test, y_test), _) = pickle.load(f, encoding="latin-1")
x_train = x_train[:5000,:]
y_train = y_train[:5000,]
x_test = x_test[:360,:]
y_test = y_test[:360,]
#################################################################
# Each image is 28 x 28, and is being stored as a flattened row of length
# 784 (=28x28). Let's take a look at one; we need to reshape it to 2d
# first.
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.transform(x_test)
svc = SVC(kernel = 'rbf')
svc.fit(x_train,y_train)
y_predict = svc.predict(x_test)
print('The Accuracy of SVC is', svc.score(x_test, y_test))
print("classification report of SVC\n",classification_report(y_test, y_predict))
samples = x_test[:100]
y_pre = y_predict[:100]
plt.figure(figsize=(12,38))
for i in range(100):
    # 创建子图
    plt.subplot(10,10,i+1)
    # 显示灰度图像
    plt.imshow(samples[i].reshape(28,28),cmap='gray')
    title = str(y_pre[i])
    plt.title(title,color='red')
    # 关闭坐标轴
    plt.axis('off')
plt.show()
# 实现手写数字数据集的降维实现手写数字数据集的降维
pca = PCA(n_components=10,whiten=True)
pca.fit(x_train,y_train)
x_train_pca = pca.transform(x_train)
x_test_pca = pca.transform(x_test)
svc = SVC(kernel = 'rbf')
svc.fit(x_train_pca,y_train)
# 比较两个模型(64维和10维)的准确率
y_pre_svc = svc.predict(x_test_pca)
print("The Accuracy of PCA_SVC is ", svc.score(x_test_pca,y_test))
print("classification report of PCA_SVC\n", classification_report(y_test, y_pre_svc))
samples = x_test[:100]
y_pre = y_pre_svc[:100]
plt.figure(figsize=(12,38))
# 对两个模型分别进行10次10折交叉验证,绘制评分对比曲线
for i in range(100):
    plt.subplot(10,10,i+1)
    plt.imshow(samples[i].reshape(28,28),cmap='gray')
    title = str(y_pre[i])
    plt.title(title)
    plt.axis('off')
plt.show()

结果:

在这里插入图片描述

SVC

在这里插入图片描述

PCA

在这里插入图片描述

目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
22 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
29天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
27天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
16天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
34 0
|
5天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
6天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
28 3
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
34 2