JavaScript 数据结构与算法之美 - 递归

简介: 算法为王。排序算法博大精深,前辈们用了数年甚至一辈子的心血研究出来的算法,更值得我们学习与推敲。因为之后要讲有内容和算法,其代码的实现都要用到递归,所以,搞懂递归非常重要。

1. 定义


  • 方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。

简单来说就是:自己调用自己


现实例子:周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊 ?电影院里面太黑了,看不清,没法数,现在你怎么办 ?


于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。


但是,前面的人也看不清啊,所以他也问他前面的人。


就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。


直到你前面的人告诉你他在哪一排,于是你就知道答案了。


基本上,所有的递归问题都可以用递推公式来表示,比如:


f(n) = f(n-1) + 1; 
// 其中,f(1) = 1


f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1) = 1 表示第一排的人知道自己在第一排。


有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:


function f(n) {
  if (n == 1) return 1;
  return f(n-1) + 1;
}


2. 为什么使用递归 ?递归的优缺点 ?


  • 优点:代码的表达力很强,写起来简洁。
  • 缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。


3. 什么样的问题可以用递归解决呢 ?


一个问题只要同时满足以下 3 个条件,就可以用递归来解决。


  1. 问题的解可以分解为几个子问题的解。何为子问题 ?就是数据规模更小的问题。


比如,前面讲的电影院的例子,你要知道,自己在哪一排的问题,可以分解为前一排的人在哪一排这样一个子问题。


  1. 问题与子问题,除了数据规模不同,求解思路完全一样

比如电影院那个例子,你求解自己在哪一排的思路,和前面一排人求解自己在哪一排的思路,是一模一样的。


  1. 存在递归终止条件

比如电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1) = 1,这就是递归的终止条件。


4. 递归常见问题及解决方案


  1. 警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
  2. 警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。


5. 如何实现递归 ?


1. 递归代码编写


写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。


2. 递归代码理解


对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。

那该如何理解递归代码呢 ?


  • 如果一个问题 A 可以分解为若干个子问题 B、C、D,你可以假设子问题 B、C、D 已经解决。
  • 而且,你只需要思考问题 A 与子问题 B、C、D 两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。
  • 屏蔽掉递归细节,这样子理解起来就简单多了。


因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。


6. 例子


1. 一个阶乘的例子:


function fact(num) {
  if (num <= 1) {
    return 1;
  } else {
    return num * fact(num - 1);
    }
}
fact(3) // 结果为 6
以下代码可导致出错:
var anotherFact = fact; 
fact = null; 
alert(antherFact(4)); //出错


由于 fact 已经不是函数了,所以出错。


使用 arguments.callee


arguments.callee 是一个指向正在执行的函数的指针,arguments.callee 返回正在被执行的对现象。


新的函数为:


function fact(num){ 
    if (num <= 1){ 
        return 1; 
    }else{ 
        return num * arguments.callee(num - 1); //此处更改了。 
    } 
} 
var anotherFact = fact; 
fact = null; 
alert(antherFact(4)); // 结果为 24


2. 再看一个多叉树的例子


先看图


微信图片_20220513122105.png


叶子结点:就是深度为 0 的结点,也就是没有孩子结点的结点,简单的说就是一个二叉树任意一个分支上的终端节点。


数据结构格式,参考如下代码:


const json = {
  name: 'A',
  children: [
    {
      name: 'B',
      children: [
        {
          name: 'E',
        },
        {
          name: 'F',
        },
        {
          name: 'G',
        }
      ]
    },
    {
      name: 'C',
      children: [
        {
          name: 'H'
        }
      ]
    },
    {
      name: 'D',
      children: [
        {
          name: 'I',
        },
        {
          name: 'J',
        }
      ]
    }
  ]
}


我们如何获取根节点的所有叶子节点个数呢 ?


递归代码如下:


/**
 * 获取根节点的所有 叶子节点 个数
 * @param {Object} json Object 对象
 */
function getLeafCountTree(json) {
  if(!json.children){
      return 1;
  } else {
      let leafCount = 0;
      for(let i = 0 ; i < json.children.length ; i++){
          // leafCount = leafCount + getLeafCountTree(json.children[i]);
          leafCount = leafCount + arguments.callee(json.children[i]);
      }
      return leafCount;
  }
}


递归遍历是比较常用的方法,比如:省市区遍历成树、多叉树、阶乘等。


7. 文章输出计划


JavaScript 数据结构与算法之美 的系列文章,坚持 3 - 7 天左右更新一篇,暂定计划如下表。


| 标题 | 链接 |

| :------ | :------ |

| 时间和空间复杂度 | https://github.com/biaochenxu... |

| 线性表(数组、链表、栈、队列) | https://github.com/biaochenxu... |

| 实现一个前端路由,如何实现浏览器的前进与后退 ?| https://github.com/biaochenxu... |

| 栈内存与堆内存 、浅拷贝与深拷贝 | https://github.com/biaochenxu... |

| 递归 | https://github.com/biaochenxu... |

| 非线性表(树、堆) | 精彩待续 |

| 冒泡排序 | 精彩待续 |

| 插入排序 | 精彩待续 |

| 选择排序 | 精彩待续 |

| 归并排序 | 精彩待续 |

| 快速排序 | 精彩待续 |

| 计数排序 | 精彩待续 |

| 基数排序 | 精彩待续 |

| 桶排序 | 精彩待续 |

| 希尔排序 | 精彩待续 |

| 堆排序 | 精彩待续 |

| 十大经典排序汇总 | 精彩待续 |

如果有错误或者不严谨的地方,请务必给予指正,十分感谢。
相关文章
|
8天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
25 2
|
16天前
|
数据采集 存储 JavaScript
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
本文介绍了如何使用Puppeteer和Node.js爬取大学招生数据,并通过代理IP提升爬取的稳定性和效率。Puppeteer作为一个强大的Node.js库,能够模拟真实浏览器访问,支持JavaScript渲染,适合复杂的爬取任务。文章详细讲解了安装Puppeteer、配置代理IP、实现爬虫代码的步骤,并提供了代码示例。此外,还给出了注意事项和优化建议,帮助读者高效地抓取和分析招生数据。
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
|
1月前
|
前端开发 JavaScript
JavaScript递归菜单栏
JavaScript递归菜单栏
JavaScript递归菜单栏
|
1月前
|
前端开发 JavaScript
JS-数据筛选
JS-数据筛选
33 7
|
1月前
|
JavaScript 数据安全/隐私保护
2024了,你会使用原生js批量获取表单数据吗
2024了,你会使用原生js批量获取表单数据吗
47 4
|
1月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
20 1
|
1月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
1月前
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
|
2月前
|
JavaScript 前端开发 安全
js逆向实战之烯牛数据请求参数加密和返回数据解密
【9月更文挑战第20天】在JavaScript逆向工程中,处理烯牛数据的请求参数加密和返回数据解密颇具挑战。本文详细分析了这一过程,包括网络请求监测、代码分析、加密算法推测及解密逻辑研究,并提供了实战步骤,如确定加密入口点、逆向分析算法及模拟加密解密过程。此外,还强调了法律合规性和安全性的重要性,帮助读者合法且安全地进行逆向工程。
88 11
|
2月前
|
JSON JavaScript 前端开发
JavaScript第五天(函数,this,严格模式,高阶函数,闭包,递归,正则,ES6)高级
JavaScript第五天(函数,this,严格模式,高阶函数,闭包,递归,正则,ES6)高级