python 数据分析k-means聚类分析

简介: python 数据分析k-means聚类分析

常见的数据分析模型有回归,分类,聚类
此次介绍的是无监督学习方面的聚类分析代码

所有代码可直接运行

1 读取数据方法

其实pandas有更方便的pd.readcsv方法实现快速读取csv数据集,还有其它方法读取各种数据集

import numpy as np

def loadDataSet(filename):
    """
    读取数据集
    Args:
        filename:文件名
    Return:
        dataMat:数据样本矩阵
    """
    dataMat=[]
    with open(filename,'rb') as f:
        for line in f:
            line=line.decode('utf-8').strip()
            eles=list(map(float,line.split(',')))
            dataMat.append(eles)
    return dataMat

2 计算样本聚类方法

"""计算俩向量的欧式距离
Args:
    vecA:向量A
    vecB:向量B
Returns:
    欧式距离
def distEclud(vecA,vecB):
    """计算俩向量的欧式距离
    Args:
        vecA:向量A
        vecB:向量B
    Returns:
        欧式距离
    """
    return np.sqrt(np.sum(np.power((vecA-vecB),2)))

3生成聚类中心矩阵

def randCent(dataSet,k):
    """
    随机生成k个聚类中心
    Args:
        dataSet:数据集
        k:簇类目
    Returns:
        centroids:聚类中心矩阵
    """
    m,_=dataSet.shape
    centroids=dataSet.take(np.random.choice(m,k),axis=0)
    return centroids 

4 k-mians聚类

def kMeans(dataSet,k,maxIter=5):
    """
    k-means
    Args:
        dataSet:数据集
        k:簇类数
    Returns:
        centroids 聚类中心矩阵
        clusterAssment:点分配结果
    """
    #随机初始化聚类中心
    centroids=randCent(dataSet,k)
    init_centroids=centroids.copy()
    
    m,n=np.shape(dataSet)
    #点分配结果,第一列指明样本所在的簇,第二列指明样本到聚类中心的距离
    clusterAssment=np.mat(np.zeros((m,2)))
    
    #标识聚类中心是否仍在改变
    clusterChanged=True
    #直至聚类中心不在变化
    iterCount=0
    while clusterChanged and iterCount<maxIter:
        iterCount+=1
        clusterChanged=False
        #分配样本到簇
        for i in range(m):
            #计算第i个样本到各个簇类中心的距离
            minIndex=0
            minDist=np.inf
            for j in range(k):
                dist=distEclud(dataSet[i,:],centroids[j,:])
                if (dist<minDist):
                    minIndex=j
                    minDist=dist
            #任何一个样本的类簇分配发生变化则认为改变
            if (clusterAssment[i,0]!=minIndex):
                clusterChanged=True
            clusterAssment[i,:]=minIndex,minDist**2
            
        #刷新聚类中心,移动聚类中心到所在簇的均值位置
        for cent in range(k):
            #通过数组过滤获得簇中的点
            ptsInCluster=dataSet[np.nonzero(
                clusterAssment[:,0].A==cent)[0]]
            if ptsInCluster.shape[0]>0:
                #计算均值并移动
                centroids[cent,:]=np.mean(ptsInCluster,axis=0)
    return centroids,clusterAssment,init_centroids

5 画图展示结果

import matplotlib.pyplot as pl

%matplotlib inline

dataMat=np.mat(loadDataSet('../data/price_diff.csv'))
m,n=np.shape(dataMat)
m,n
#注意,这里我们只设定了对多四个簇的样式,所有前面如果set_k超过4,后面会出现index_error
patterns=['o','D','^','s']
colors=['b','g','y','black']
fig=pl.figure()
title='kmeans with k={}'.format(set_k)
ax=fig.add_subplot(111,title=title)
for k in range(clusterCount):
    #绘制聚类中心
    ax.scatter(centroids[k,0],centroids[k,1],color='r',marker='+',linewidth=20)
    #绘制初始聚类中心
    ax.scatter(init_centroids[k,0],init_centroids[k,1],color='purple',marker='*',linewidths=10)
    for i in range(m):
        #绘制属于该聚类中心的样本
        ptsInCluster=dataMat[np.nonzero(clusterAssment[:,0].A==k)[0]]
        ax.scatter(ptsInCluster[:,0].flatten().A[0],ptsInCluster[:,1].flatten().A[0],marker=patterns[k],color=colors[k])

在这里插入图片描述

目录
相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
27天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
84 35
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
1月前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析

热门文章

最新文章

推荐镜像

更多