python 数据分析k-means聚类分析

简介: python 数据分析k-means聚类分析

常见的数据分析模型有回归,分类,聚类
此次介绍的是无监督学习方面的聚类分析代码

所有代码可直接运行

1 读取数据方法

其实pandas有更方便的pd.readcsv方法实现快速读取csv数据集,还有其它方法读取各种数据集

import numpy as np

def loadDataSet(filename):
    """
    读取数据集
    Args:
        filename:文件名
    Return:
        dataMat:数据样本矩阵
    """
    dataMat=[]
    with open(filename,'rb') as f:
        for line in f:
            line=line.decode('utf-8').strip()
            eles=list(map(float,line.split(',')))
            dataMat.append(eles)
    return dataMat

2 计算样本聚类方法

"""计算俩向量的欧式距离
Args:
    vecA:向量A
    vecB:向量B
Returns:
    欧式距离
def distEclud(vecA,vecB):
    """计算俩向量的欧式距离
    Args:
        vecA:向量A
        vecB:向量B
    Returns:
        欧式距离
    """
    return np.sqrt(np.sum(np.power((vecA-vecB),2)))

3生成聚类中心矩阵

def randCent(dataSet,k):
    """
    随机生成k个聚类中心
    Args:
        dataSet:数据集
        k:簇类目
    Returns:
        centroids:聚类中心矩阵
    """
    m,_=dataSet.shape
    centroids=dataSet.take(np.random.choice(m,k),axis=0)
    return centroids 

4 k-mians聚类

def kMeans(dataSet,k,maxIter=5):
    """
    k-means
    Args:
        dataSet:数据集
        k:簇类数
    Returns:
        centroids 聚类中心矩阵
        clusterAssment:点分配结果
    """
    #随机初始化聚类中心
    centroids=randCent(dataSet,k)
    init_centroids=centroids.copy()
    
    m,n=np.shape(dataSet)
    #点分配结果,第一列指明样本所在的簇,第二列指明样本到聚类中心的距离
    clusterAssment=np.mat(np.zeros((m,2)))
    
    #标识聚类中心是否仍在改变
    clusterChanged=True
    #直至聚类中心不在变化
    iterCount=0
    while clusterChanged and iterCount<maxIter:
        iterCount+=1
        clusterChanged=False
        #分配样本到簇
        for i in range(m):
            #计算第i个样本到各个簇类中心的距离
            minIndex=0
            minDist=np.inf
            for j in range(k):
                dist=distEclud(dataSet[i,:],centroids[j,:])
                if (dist<minDist):
                    minIndex=j
                    minDist=dist
            #任何一个样本的类簇分配发生变化则认为改变
            if (clusterAssment[i,0]!=minIndex):
                clusterChanged=True
            clusterAssment[i,:]=minIndex,minDist**2
            
        #刷新聚类中心,移动聚类中心到所在簇的均值位置
        for cent in range(k):
            #通过数组过滤获得簇中的点
            ptsInCluster=dataSet[np.nonzero(
                clusterAssment[:,0].A==cent)[0]]
            if ptsInCluster.shape[0]>0:
                #计算均值并移动
                centroids[cent,:]=np.mean(ptsInCluster,axis=0)
    return centroids,clusterAssment,init_centroids

5 画图展示结果

import matplotlib.pyplot as pl

%matplotlib inline

dataMat=np.mat(loadDataSet('../data/price_diff.csv'))
m,n=np.shape(dataMat)
m,n
#注意,这里我们只设定了对多四个簇的样式,所有前面如果set_k超过4,后面会出现index_error
patterns=['o','D','^','s']
colors=['b','g','y','black']
fig=pl.figure()
title='kmeans with k={}'.format(set_k)
ax=fig.add_subplot(111,title=title)
for k in range(clusterCount):
    #绘制聚类中心
    ax.scatter(centroids[k,0],centroids[k,1],color='r',marker='+',linewidth=20)
    #绘制初始聚类中心
    ax.scatter(init_centroids[k,0],init_centroids[k,1],color='purple',marker='*',linewidths=10)
    for i in range(m):
        #绘制属于该聚类中心的样本
        ptsInCluster=dataMat[np.nonzero(clusterAssment[:,0].A==k)[0]]
        ax.scatter(ptsInCluster[:,0].flatten().A[0],ptsInCluster[:,1].flatten().A[0],marker=patterns[k],color=colors[k])

在这里插入图片描述

目录
相关文章
|
6天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
14天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
41 0
|
8天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
8天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
19 2
|
7天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
16 1
|
8天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
9天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
14天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
23 3
|
15天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
29 2
|
6天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集