龙蜥开源内核追踪利器 Surftrace:协议包解析效率提升 10 倍! | 龙蜥技术

简介: 如何将网络报文与内核协议栈清晰关联起来精准追踪到关注的报文行进路径呢?

image.png

文/系统运维 SIG


Surftrace 是由系统运维 SIG 推出的一个 ftrace 封装器和开发编译平台,让用户既能基于 libbpf 快速构建工程进行开发,也能作为 ftrace 的封装器进行 trace 命令编写。项目包含 Surftrace 工具集和 pylcc、glcc(python or generic C language for libbpf Compiler Collection),提供远程和本地 eBPF 的编译能力。


通过对 krobe 和 ftrace 相关功能最大化抽象,同时对各种场景下的追踪能力增强(比如网络协议抓包),使得用户非常快速的上手,对定位问题效率提升 10 倍以上另外,现如今火到天际的技术——eBPF,Surftrace 支持通过 libbpf 及 CO-RE 能力,对 bpf 的 map 和 prog 等常用函数进行了封装和抽象,基于此平台开发的 libbpf 程序可以无差别运行在各个主流内核版本上,开发、部署和运行效率提升了一个数量级。


Surftrace 最大的优势在于将当前主流的 trace 技术一并提供给广大开发者,可以通过 ftrace 也可以使用 eBPF,应用场景覆盖内存、IO 等 Linux 各个子系统,特别是在网络协议栈跟踪上面,对 skb 内部数据结构,网络字节序处理做到行云流水,把复杂留给自己,简单留给你。今天就让我们来见识一下 Surftrace 在网络领域的强劲表现吧。

一、理解 Linux 内核协议栈

定位网络问题是一个软件开发者必备一项基础技能,诸如 ping 连通性、tcpdump 抓包分析等手段,可以对网络问题进行初步定界。然而,当问题深入内核协议栈内部,如何将网络报文与内核协议栈清晰关联起来,精准追踪到关注的报文行进路径呢?

1.1 网络报文分层结构

引用自《TCP/IP 详解》卷一。

image.png如上图所示,网络报文对数据报文数据在不同层进行封装。不同 OS 均采用一致的报文封装方式,达到跨软件平台通讯的目的。

1.2 sk_buff 结构体

sk_buff 是网络报文在 Linux 内核中的实际承载者,它在 include/linux/skbuff.h 文件中定义,结构体成员较多,本文不逐一展开。

image.png

用户需要重点关注下面两个结构体成员:


unsignedchar *head, *data;


其中 head 指向了缓冲区开始,data 指向了当前报文处理所在协议层的起始位置,如当前协议处理位于 tcp 层,data 指针就会指向 struct tcphdr。在 IP 层,则指向了struct iphdr。因此,data 指针成员,是报文在内核处理过程中的关键信标。

1.3 内核网络协议栈地图

下图是协议栈处理地图,可以保存后放大观看(图源网络)。

image.png

不难发现,上图中几乎所有函数都涉及到 skb 结构体处理,因此要想深入了解网络报文在内核的处理过程,skb->data 应该就是最理想的引路蜂。

二、Surftrace 对网络报文增强处理

Surftrace 基于 ftrace 封装,采用接近于 C 语言的参数语法风格,将原来繁琐的配置流程优化到一行命令语句完成,极大简化了 ftrace 部署步骤,是一款非常方便的内核追踪工具。但是要追踪网络报文,光解析一个 skb->data 指针是远远不够的。存在以下障碍:

  • skb->data 指针在不同网络层指向的协议头并不固定;
  • 除了获取当前结构内容,还有获取上一层报文内容的需求,比如一个我们在 udphdr结构体中,是无法直接获取到 udp 报文内容;
  • 源数据呈现不够人性化。如 ipv4 报文 IP 是以一个 u32 数据类型,可读性不佳,过滤器配置困难。

针对上述困难,Surftrace 对 skb 传参做了相应的特殊处理,以达到方便易用的效果。

2.1 网络协议层标记处理

以追踪网协议栈报文接收的入口__netif_receive_skb_core 函数为例,函数原型定义:


staticint__netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,  struct packet_type **ppt_prev);

解析每个 skb 对应报文三层协议成员的方法:


surftrace 'p __netif_receive_skb_core proto=@(struct iphdr *)l3%0->protocol`

协议成员获取方法为@(struct iphdr *)l3%0->protocol

image.png

tips:

  • 可以跨协议层向上解析报文结构体,如在 l3 层去分析 struct icmphdr 中的数据成员
  • 不可以跨协议层向下解析报文结构体,如在 l4 层去分析 struct iphdr 中的成员

2.2 扩充下一层报文内容获取方式

surftrace 为 ethhdr、iphdr、icmphdr、udphdr、tcphdr 结构体添加了 xdata 成员,用于获取下一层报文内容。xdata 有以下 5 类类型:

数据 数据类型 数据长度(字节)
cdata unsgined char [] 1
sdata unsigned short [] 2
ldata unsigned int [] 4
qdata unsigned long long [] 8
Sdata char* [] 字符串

数组下标是按照位宽进行对齐的,比如要提取 icmp 报文中的 2~3 字节内容,组成一个 unsigned short 的数据,可以通过以下方法获取:


data=@(struct icmphdr*)l3%0->sdata[1]

2.3 IP 和字节序模式转换

网络报文字节序采取的是大端模式,而我们的操作系统一般采用小端模式。同时,ipv4 采用了一个 unsigned int 数据类型来表示一个 IP,而我们通常习惯采用 1.2.3.4 的方式来表示一个 ipv4 地址。上述差异导致直接去解读网络报文内容的时候非常费力。surftrace 通过往变量增加前缀的方式,在数据呈现以及过滤的时候,将原始数据根据前缀命名规则进行转换,提升可读性和便利性。

前缀名 数据输出形式 数据长度(字节)
ip_ a.b.c.d ip字符串
b16_ 10 进制 2
b32_ 10 进制 4
b64_ 10 进制 8
B16_ 16 进制 2
B32_ 16 进制 4
B64_ 16 进制 8

2.4  牛刀小试

我们在一个实例上抓到一个非预期的 udp 报文,它会往目标 ip 10.0.1.221 端口号  9988 发送数据,现在想要确定这个报文的发送进程。由于 udp 是一种面向无连接的通讯协议,无法直接通过 netstat 等方式锁定发送者。用 Surftrace 可以在 ip_output 函数处中下钩子:


intip_output(struct net *net, struct sock *sk, struct sk_buff *skb)

追踪表达式:


surftrace 'p ip_output proto=@(struct iphdr*)l3%2->protocol ip_dst=@(struct iphdr*)l3%2->daddr b16_dest=@(struct udphdr*)l3%2->dest comm=$comm body=@(struct udphdr*)l3%2->Sdata[0] f:proto==17&&ip_dst==10.0.1.221&&b16_dest==9988'


追踪结果:

surftrace 'p ip_output proto=@(struct iphdr*)l3%2->protocol ip_dst=@(struct iphdr*)l3%2->daddr b16_dest=@(struct udphdr*)l3%2->dest comm=$comm body=@(struct udphdr*)l3%2->Sdata[0] f:proto==17&&ip_dst==10.0.1.221&&b16_dest==9988' echo 'p:f0 ip_output proto=+0x9(+0xe8(%dx)):u8 ip_dst=+0x10(+0xe8(%dx)):u32 b16_dest=+0x16(+0xe8(%dx)):u16 comm=$comm body=+0x1c(+0xe8(%dx)):string' >> /sys/kernel/debug/tracing/kprobe_events echo 'proto==17&&ip_dst==0xdd01000a&&b16_dest==1063' > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/filter echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-2733784 [014] .... 12648619.219880: f0: (ip_output+0x0/0xd0) proto=17 ip_dst=10.0.1.221 b16_dest=9988 comm="nc" body="Hello World\!  @"


通过上述命令,可以确定报文的发送的 pid 为 2733784,进程名为 nc。

三、实战:定位网络问题

接下来我们从一个实际网络网络问题出发,讲述如何采用 Surftrace 定位网络问题。

3.1 问题背景

我们有两个实例通讯存在性能问题,经抓包排查,确认性能上不去的根因是存在丢包导致的。幸运的是,该问题可以通过 ping 对端复现,确认丢包率在 10% 左右。

image.png

通过进一步抓包分析,可以明确报文丢失在实例 B 内部。

image.png

通过检查 /proc/net/snmp 以及分析内核日志,没有发现可疑的地方。

3.2 surftrace 跟踪

在 1.1 节的地图中,我们可以查到网络报文是内核由 dev_queue_xmit 函数将报文推送到网卡驱动。因此,可以在这个出口先进行 probe,过滤 ping 报文,加上 -s 选项,打出调用栈:

surftrace 'p dev_queue_xmit proto=@(struct iphdr *)l2%0->protocol ip_dst=@(struct iphdr *)l2%0->daddr f:proto==1&&ip_dst==192.168.1.3' -s

可以获取到以下调用栈:

image.png

由于问题复现概率比较高,我们可以将怀疑的重点方向先放在包发送流程中,即从 icmp_echo 函数往上,用 Surftrace 在每一个符号都加一个 trace 点,追踪下回包到底消失在哪里。

image.png

3.3 锁定丢包点

问题追踪到了这里,对于经验丰富的同学应该是可以猜出丢包原因。我们不妨纯粹从代码角度出发,再找一下准确的丢包位置。结合代码分析,我们可以在函数内部找到以下两处 drop 点:image.png通过 Surftrace 函数内部追踪功能,结合汇编代码信息,可以明确丢包点是出在了 qdisc->enqueue 钩子函数中。


rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;

此时,可以结合汇编信息:

image.png

找到钩子函数存入的寄存名为 bx,然后通过 surftrace 打印出来。


surftrace 'p dev_queue_xmit+678 pfun=%bx'


然后将 pfun 值在 /proc/kallsyms 查找匹配。

image.png

image.gif至此可以明确是 htb qdisc 导致丢包。确认相关配置存在问题后,将相关配置回退,网络性能得以恢复。

四、总结

Surftrace 在网络层面的增强,使得用户只需要有相关的网络基础和一定的内核知识储备,就可以用较低编码工作量达到精准追踪网络报文在 Linux 内核的完整处理过程。适合用于追踪 Linux 内核协议栈代码、定位深层次网络问题。


参考文献:

【1】《TCP/IP详解》

【2】《Linux内核设计与实现》

【3】《深入理解 Linux 网络技术内幕》

【4】surftrace readmde:

https://github.com/aliyun/surftrace/blob/master/ReadMe.md

【5】https://lxr.missinglinkelectronics.com


龙蜥社区系统运维 SIG 致力于打造一个集主机管理、配置部署、监控报警、异常诊断、安全审计等一系列功能的自动化运维平台。


欢迎更多开发者加入系统运维 SIG:
网址:https://openanolis.cn/sig/sysom
邮件列表:sysom@lists.openanolis.cn
surftracel链接:https://gitee.com/anolis/surftrace

—— 完 ——

加入龙蜥社群

加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。欢迎开发者/用户加入龙蜥社区(OpenAnolis)交流,共同推进龙蜥社区的发展,一起打造一个活跃的、健康的开源操作系统生态!

公众号&小龙交流群.png

关于龙蜥社区

龙蜥社区OpenAnolis)由企事业单位、高等院校、科研单位、非营利性组织、个人等在自愿、平等、开源、协作的基础上组成的非盈利性开源社区。龙蜥社区成立于 2020 年 9 月,旨在构建一个开源、中立、开放的Linux 上游发行版社区及创新平台。

龙蜥社区成立的短期目标是开发龙蜥操作系统(Anolis OS)作为 CentOS 停服后的应对方案,构建一个兼容国际 Linux 主流厂商的社区发行版。中长期目标是探索打造一个面向未来的操作系统,建立统一的开源操作系统生态,孵化创新开源项目,繁荣开源生态。

目前,龙蜥OS 8.4已发布,支持 X86_64 、Arm64、LoongArch 架构,完善适配 Intel、兆芯、鲲鹏、龙芯等芯片,并提供全栈国密支持。

欢迎下载:

https://openanolis.cn/download

加入我们,一起打造面向未来的开源操作系统!

https://openanolis.cn

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
19天前
|
存储 物联网 调度
操作系统的心脏:内核深度解析
在数字世界的构建中,操作系统扮演着基石的角色,而其核心—内核,则是这一复杂系统的灵魂。本文将深入探讨操作系统内核的工作原理,揭示它是如何管理硬件资源、运行程序以及提供系统服务的。通过理解内核的结构和功能,我们可以更好地把握计算机系统的运作机制,进而优化和创新我们的技术实践。
|
1月前
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
109 3
|
8天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
38 3
|
13天前
|
存储 人工智能 安全
操作系统的心脏——内核深度解析
【10月更文挑战第29天】 本文深入探讨了操作系统的核心组件——内核,包括其定义、功能、架构以及在现代计算中的重要性。通过对比不同操作系统内核的设计哲学和技术实现,揭示了内核如何影响系统性能、稳定性和安全性。此外,文章还讨论了未来内核技术的潜在发展方向,为读者提供了一个全面了解内核工作原理的平台。
|
10天前
|
存储 消息中间件 算法
深入探索操作系统的心脏——内核机制解析
本文旨在揭示操作系统核心——内核的工作原理,通过剖析其关键组件与机制,为读者提供一个清晰的内核结构图景。不同于常规摘要的概述性内容,本文摘要将直接聚焦于内核的核心概念、主要功能以及其在系统管理中扮演的角色,旨在激发读者对操作系统深层次运作原理的兴趣与理解。
|
14天前
|
自然语言处理 并行计算 数据可视化
免费开源法律文档比对工具:技术解析与应用
这款免费开源的法律文档比对工具,利用先进的文本分析和自然语言处理技术,实现高效、精准的文档比对。核心功能包括文本差异检测、多格式支持、语义分析、批量处理及用户友好的可视化界面,广泛适用于法律行业的各类场景。
|
17天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
18天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
8天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
28 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
68 0

热门文章

最新文章

推荐镜像

更多
下一篇
无影云桌面