浅析利用高斯核函数进行半监督分类

简介: Laplacian RegularizationIn Least Square learning methods, we calculate the Euclidean distance between sample points to find a classifier plane. However, here we calculate the minimum dist

Laplacian Regularization

In Least Square learning methods, we calculate the Euclidean distance between sample points to find a classifier plane. However, here we calculate the minimum distance along the manifold of points and based on which we find a classifier plane.

In semi-supervised learning applications, we assume that the inputs x must locate in some manifold and the outputs y vary smoothly in that manifold. In the case of classification, inputs in the same manifold are supposed to have the same label. In the case of regression, the maps of inputs to outputs are supposed to vary smoothly in some manifold.

Take the Gaussian kernal function for example:

fθ(x)=j=1nθjK(x,xj),K(x,c)=exp(xc22h2)

There are unlabeled samples {xi}n+ni=n+1 that also be utilized:
fθ(x)=j=1n+nθjK(x,xj)

In order to make all of the samples (labeled and unlabeled) have local similarity, it is necessary to add a constraint condition:
minθ12i=1n(fθ(xi)yi)2+λ2θ2+v4i,i=1n+nWi,i(fθ(xi)fθ(xi))2

whose first two terms relate to the 2 regularized least square learning and last term is the regularized term relates to semi-supervised learning ( Laplacian Regularization). v0 is a parameter to tune the smoothness of the manifold. Wi,i0 is the similarity between xi and xi . Not familiar with similarity? Refer to:

http://blog.csdn.net/philthinker/article/details/70212147

Then how to solve the optimization problem? By the diagonal matrix D , whose elements are sums of row elements of W , and the Laplace matrix L that equals to DW , it is possible to transform the optimization problem above to a general 2 constrained Least Square problem. For simplicity, we omit the details here.

n=200; a=linspace(0,pi,n/2);
u=-10*[cos(a)+0.5 cos(a)-0.5]'+randn(n,1);
v=10*[sin(a) -sin(a)]'+randn(n,1);
x=[u v]; y=zeros(n,1); y(1)=1; y(n)=-1;
x2=sum(x.^2,2); hh=2*1^2;
k=exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*(x'))/hh);
w=k;
t=(k^2+1*eye(n)+10*k*(diag(sum(w))-w)*k)\(k*y);

m=100; X=linspace(-20,20,m)';X2=X.^2;
U=exp(-(repmat(u.^2,1,m)+repmat(X2',n,1)-2*u*(X'))/hh);
V=exp(-(repmat(v.^2,1,m)+repmat(X2',n,1)-2*v*(X'))/hh);
figure(1); clf; hold on; axis([-20 20 -20 20]);
colormap([1 0.7 1; 0.7 1 1]);
contourf(X,X,sign(V'*(U.*repmat(t,1,m))));
plot(x(y==1,1),x(y==1,2),'bo');
plot(x(y==-1,1),x(y==-1,2),'rx');
plot(x(y==0,1),x(y==0,2),'k.');

LR

相关文章
|
机器学习/深度学习 人工智能 测试技术
使用随机森林分类器对基于NDRE(归一化差异水体指数)的特征进行分类
使用随机森林分类器对基于NDRE(归一化差异水体指数)的特征进行分类
128 1
|
机器学习/深度学习 传感器 算法
DBN-SVM分类预测 | Matlab 深度置信网络-支持向量机分类预测
DBN-SVM分类预测 | Matlab 深度置信网络-支持向量机分类预测
|
5月前
|
机器学习/深度学习 算法
贝叶斯线性回归:概率与预测建模的融合
本文探讨了贝叶斯方法在线性回归中的应用,从不确定性角度出发,介绍了如何通过概率来表达变量间关系的不确定性。文章首先回顾了古希腊天文学家使用本轮系统模拟行星运动的历史,并将其与傅里叶级数分解方法类比,强调了近似的重要性。接着,通过高斯分布和贝叶斯推断,详细讲解了线性回归中的不确定性处理方法。文章使用Howell1数据集,展示了如何构建和拟合高斯模型,并通过先验预测模拟验证模型合理性。最后,介绍了多项式回归和样条方法,展示了如何逐步增加模型复杂性以捕捉更细微的数据模式。贝叶斯方法不仅提供了点估计,还提供了完整的后验分布,使得模型更具解释性和鲁棒性。
117 1
贝叶斯线性回归:概率与预测建模的融合
|
10月前
|
机器学习/深度学习
R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析
R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析
|
10月前
|
机器学习/深度学习 数据采集 算法
乳腺癌预测:特征交叉+随机森林=成功公式?
乳腺癌预测:特征交叉+随机森林=成功公式?
133 0
乳腺癌预测:特征交叉+随机森林=成功公式?
|
机器学习/深度学习 算法 索引
逻辑回归与多项式特征:解密分类问题的强大工具
逻辑回归与多项式特征:解密分类问题的强大工具
|
机器学习/深度学习 存储 索引
用4种回归方法绘制预测结果图表:向量回归、随机森林回归、线性回归、K-最近邻回归
用4种回归方法绘制预测结果图表:向量回归、随机森林回归、线性回归、K-最近邻回归
197 0
特征选择:回归,二分类,多分类特征选择有这么多差异需要注意
特征选择:回归,二分类,多分类特征选择有这么多差异需要注意
175 0
|
机器学习/深度学习 资源调度 Serverless
核函数:RBF 是如何让线性 SVM 可以分类非线性数据的?
如果原始空间是有限维,即属性数有限,那么一定存在一个高维特征空间使得样本可分。
273 1
核函数:RBF 是如何让线性 SVM 可以分类非线性数据的?
|
机器学习/深度学习 数据可视化 算法
分别用线性SVM和高斯核SVM预测对数据进行分类
分别用线性SVM和高斯核SVM预测对数据进行分类
182 0