浅析利用高斯核函数进行半监督分类

简介: Laplacian RegularizationIn Least Square learning methods, we calculate the Euclidean distance between sample points to find a classifier plane. However, here we calculate the minimum dist

Laplacian Regularization

In Least Square learning methods, we calculate the Euclidean distance between sample points to find a classifier plane. However, here we calculate the minimum distance along the manifold of points and based on which we find a classifier plane.

In semi-supervised learning applications, we assume that the inputs x must locate in some manifold and the outputs y vary smoothly in that manifold. In the case of classification, inputs in the same manifold are supposed to have the same label. In the case of regression, the maps of inputs to outputs are supposed to vary smoothly in some manifold.

Take the Gaussian kernal function for example:

fθ(x)=j=1nθjK(x,xj),K(x,c)=exp(xc22h2)

There are unlabeled samples {xi}n+ni=n+1 that also be utilized:
fθ(x)=j=1n+nθjK(x,xj)

In order to make all of the samples (labeled and unlabeled) have local similarity, it is necessary to add a constraint condition:
minθ12i=1n(fθ(xi)yi)2+λ2θ2+v4i,i=1n+nWi,i(fθ(xi)fθ(xi))2

whose first two terms relate to the 2 regularized least square learning and last term is the regularized term relates to semi-supervised learning ( Laplacian Regularization). v0 is a parameter to tune the smoothness of the manifold. Wi,i0 is the similarity between xi and xi . Not familiar with similarity? Refer to:

http://blog.csdn.net/philthinker/article/details/70212147

Then how to solve the optimization problem? By the diagonal matrix D , whose elements are sums of row elements of W , and the Laplace matrix L that equals to DW , it is possible to transform the optimization problem above to a general 2 constrained Least Square problem. For simplicity, we omit the details here.

n=200; a=linspace(0,pi,n/2);
u=-10*[cos(a)+0.5 cos(a)-0.5]'+randn(n,1);
v=10*[sin(a) -sin(a)]'+randn(n,1);
x=[u v]; y=zeros(n,1); y(1)=1; y(n)=-1;
x2=sum(x.^2,2); hh=2*1^2;
k=exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*(x'))/hh);
w=k;
t=(k^2+1*eye(n)+10*k*(diag(sum(w))-w)*k)\(k*y);

m=100; X=linspace(-20,20,m)';X2=X.^2;
U=exp(-(repmat(u.^2,1,m)+repmat(X2',n,1)-2*u*(X'))/hh);
V=exp(-(repmat(v.^2,1,m)+repmat(X2',n,1)-2*v*(X'))/hh);
figure(1); clf; hold on; axis([-20 20 -20 20]);
colormap([1 0.7 1; 0.7 1 1]);
contourf(X,X,sign(V'*(U.*repmat(t,1,m))));
plot(x(y==1,1),x(y==1,2),'bo');
plot(x(y==-1,1),x(y==-1,2),'rx');
plot(x(y==0,1),x(y==0,2),'k.');

LR

相关文章
|
3天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
271 116
|
18天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
5天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
369 36
Meta SAM3开源:让图像分割,听懂你的话
|
12天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
665 220
|
17小时前
|
Windows
dll错误修复 ,可指定下载dll,regsvr32等
dll错误修复 ,可指定下载dll,regsvr32等
123 95
|
10天前
|
人工智能 移动开发 自然语言处理
2025最新HTML静态网页制作工具推荐:10款免费在线生成器小白也能5分钟上手
晓猛团队精选2025年10款真正免费、无需编程的在线HTML建站工具,涵盖AI生成、拖拽编辑、设计稿转代码等多种类型,均支持浏览器直接使用、快速出图与文件导出,特别适合零基础用户快速搭建个人网站、落地页或企业官网。
1598 157
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
897 61