686. 重复叠加字符串匹配 :「卡常」&「上下界性质」&「KMP」&「字符串哈希」

简介: 686. 重复叠加字符串匹配 :「卡常」&「上下界性质」&「KMP」&「字符串哈希」

网络异常,图片无法展示
|

题目描述



这是 LeetCode 上的 686. 重复叠加字符串匹配 ,难度为 中等


Tag : 「字符串哈希」、「KMP」


给定两个字符串 ab,寻找重复叠加字符串 a 的最小次数,使得字符串 b 成为叠加后的字符串 a 的子串,如果不存在则返回 -1


注意:字符串 "abc" 重复叠加 0 次是 "",重复叠加 1 次是 "abc",重复叠加 2 次是 "abcabc"


示例 1:


输入:a = "abcd", b = "cdabcdab"
输出:3
解释:a 重复叠加三遍后为 "abcdabcdabcd", 此时 b 是其子串。
复制代码


示例 2:


输入:a = "a", b = "aa"
输出:2
复制代码


示例 3:


输入:a = "a", b = "a"
输出:1
复制代码


示例 4:


输入:a = "abc", b = "wxyz"
输出:-1
复制代码


提示:


  • 1 <= a.length <= 10^41<=a.length<=104
  • 1 <= b.length <= 10^41<=b.length<=104
  • ab 由小写英文字母组成


基本分析



首先,可以分析复制次数的「下界」和「上界」为何值:


对于「下界」的分析是容易的:至少将 a 复制长度大于等于 b 的长度,才有可能匹配。


在明确了「下界」后,再分析再经过多少次复制,能够明确得到答案,能够得到明确答案的最小复制次数即是上界。


由于主串是由 a 复制多次而来,并且是从主串中找到子串 b,因此可以明确子串的起始位置,不会超过 a 的长度。


网络异常,图片无法展示
|


长度越过 a 长度的起始匹配位置,必然在此前已经被匹配过了。


由此,我们可知复制次数「上界」最多为「下界 + 11」。


a 的长度为 nnb 的长度为 mm,下界次数为 c1c1,上界次数为 c2 = c1 + 1c2=c1+1


因此我们可以对 a 复制 c2c2 次,得到主串后匹配 b,如果匹配成功后的结束位置不超过了 n * c1nc1,说明复制 c1c1 即可,返回 c1c1,超过则返回 c2c2;匹配不成功则返回 -11


卡常



这是我最开始的 AC 版本。


虽然这是道挺显然的子串匹配问题,但是昨晚比平时晚睡了一个多小时,早上起来精神状态不是很好,身体的每个细胞都在拒绝写 KMP 🤣


就动了歪脑筋写了个「卡常」做法。


通过该做法再次印证了 LC 的评测机制十分奇葩:居然不是对每个用例单独计时,也不是算总的用例用时,而是既算单用例耗时,又算总用时??


导致我直接 TLE66 次才通过(从 700700 试到了 100100),其中有 44TLE 是显示通过了所有样例,但仍然 TLE,我不理解为什么要设置这样迷惑的机制。


回到该做法本身,首先对 a 进行复制确保长度大于等于 b,然后在一定时间内,不断的「复制 - 检查」,如果在规定时间内能够找到则返回复制次数,否则返回 -1


代码:


import java.time.Clock;
class Solution {
    public int repeatedStringMatch(String a, String b) {
        StringBuilder sb = new StringBuilder();
        int ans = 0;
        while (sb.length() < b.length() && ++ans > 0) sb.append(a);
        Clock clock = Clock.systemDefaultZone();
        long start = clock.millis();
        while (clock.millis() - start < 100) {
            if (sb.indexOf(b) != -1) return ans;
            sb.append(a);
            ans++;
        }
        return -1;
    }
}
复制代码


  • 时间复杂度:O(C)O(C)
  • 空间复杂度:O(C)O(C)


上下界性质



通过「基本分析」后,我们发现「上下界」具有准确的大小关系,其实不需要用到「卡常」做法。


只需要进行「上界」次复制后,尝试匹配,根据匹配结果返回答案即可。


代码:


class Solution {
    public int repeatedStringMatch(String a, String b) {
        StringBuilder sb = new StringBuilder();
        int ans = 0;
        while (sb.length() < b.length() && ++ans > 0) sb.append(a);
        sb.append(a);
        int idx = sb.indexOf(b);
        if (idx == -1) return -1;
        return idx + b.length() > a.length() * ans ? ans + 1 : ans;
    }
}
复制代码


  • 时间复杂度:需要 \left \lceil \frac{m}{n} \right \rceil + 1nm+1 次拷贝 和 一次子串匹配。复杂度为 O(n * (\left \lceil \frac{m}{n} \right \rceil + 1))O(n(nm+1))
  • 空间复杂度:O(n * (\left \lceil \frac{m}{n} \right \rceil + 1))O(n(nm+1))


KMP



其中 indexOf 部分可以通过 KMP/字符串哈希 实现,不熟悉 KMP 的同学,可以查看 一文详解 KMP 算法,里面通过大量配图讲解了 KMP 的匹配过程与提供了实用模板。


使用 KMP 代替 indexOf 可以有效利用主串是由多个 a 复制而来的性质。


代码:


class Solution {
    public int repeatedStringMatch(String a, String b) {
        StringBuilder sb = new StringBuilder();
        int ans = 0;
        while (sb.length() < b.length() && ++ans > 0) sb.append(a);
        sb.append(a);
        int idx = strStr(sb.toString(), b);
        if (idx == -1) return -1;
        return idx + b.length() > a.length() * ans ? ans + 1 : ans;
    }
    int strStr(String ss, String pp) {
        if (pp.isEmpty()) return 0;
        // 分别读取原串和匹配串的长度
        int n = ss.length(), m = pp.length();
        // 原串和匹配串前面都加空格,使其下标从 1 开始
        ss = " " + ss;
        pp = " " + pp;
        char[] s = ss.toCharArray();
        char[] p = pp.toCharArray();
        // 构建 next 数组,数组长度为匹配串的长度(next 数组是和匹配串相关的)
        int[] next = new int[m + 1];
        // 构造过程 i = 2,j = 0 开始,i 小于等于匹配串长度 【构造 i 从 2 开始】
        for (int i = 2, j = 0; i <= m; i++) {
            // 匹配不成功的话,j = next(j)
            while (j > 0 && p[i] != p[j + 1]) j = next[j];
            // 匹配成功的话,先让 j++
            if (p[i] == p[j + 1]) j++;
            // 更新 next[i],结束本次循环,i++
            next[i] = j;
        }
        // 匹配过程,i = 1,j = 0 开始,i 小于等于原串长度 【匹配 i 从 1 开始】
        for (int i = 1, j = 0; i <= n; i++) {
            // 匹配不成功 j = next(j)
            while (j > 0 && s[i] != p[j + 1]) j = next[j];
            // 匹配成功的话,先让 j++,结束本次循环后 i++
            if (s[i] == p[j + 1]) j++;
            // 整一段匹配成功,直接返回下标
            if (j == m) return i - m;
        }
        return -1;
    }
}
复制代码


  • 时间复杂度:需要 \left \lceil \frac{m}{n} \right \rceil + 1nm+1 次拷贝 和 一次子串匹配。复杂度为 O(n * (\left \lceil \frac{m}{n} \right \rceil + 1))O(n(nm+1))
  • 空间复杂度:O(n * (\left \lceil \frac{m}{n} \right \rceil + 1))O(n(nm+1))


字符串哈希



结合「基本分析」,我们知道这本质是一个子串匹配问题,我们可以使用「字符串哈希」来解决。


a 的长度为 nnb 的长度为 mm


仍然是先将 a 复制「上界」次,得到主串 ss,目的是从 ss 中检测是否存在子串为 b


在字符串哈希中,为了方便,我们将 ssb 进行拼接,设拼接后长度为 lenlen,那么 b 串的哈希值为 [len - m + 1, len][lenm+1,len] 部分(下标从 11 开始),记为 targettarget


然后在 [1, n][1,n] 范围内枚举起点,尝试找长度为 mm 的哈希值与 targettarget 相同的哈希值。


代码:


class Solution {
    public int repeatedStringMatch(String a, String b) {
        StringBuilder sb = new StringBuilder();
        int ans = 0;
        while (sb.length() < b.length() && ++ans > 0) sb.append(a);
        sb.append(a);
        int idx = strHash(sb.toString(), b);
        if (idx == -1) return -1;
        return idx + b.length() > a.length() * ans ? ans + 1 : ans;
    }
    int strHash(String ss, String b) {
        int P = 131;
        int n = ss.length(), m = b.length();
        String str = ss + b;
        int len = str.length();
        int[] h = new int[len + 10], p = new int[len + 10];
        h[0] = 0; p[0] = 1;
        for (int i = 0; i < len; i++) {
            p[i + 1] = p[i] * P;
            h[i + 1] = h[i] * P + str.charAt(i);
        }
        int r = len, l = r - m + 1;
        int target = h[r] - h[l - 1] * p[r - l + 1]; // b 的哈希值
        for (int i = 1; i <= n; i++) {
            int j = i + m - 1;
            int cur = h[j] - h[i - 1] * p[j - i + 1]; // 子串哈希值
            if (cur == target) return i - 1;
        }
        return -1;
    }
}
复制代码


  • 时间复杂度:需要 \left \lceil \frac{m}{n} \right \rceil + 1nm+1 次拷贝 和 一次子串匹配。复杂度为 O(n * (\left \lceil \frac{m}{n} \right \rceil + 1))O(n(nm+1))
  • 空间复杂度:O(n * (\left \lceil \frac{m}{n} \right \rceil + 1))O(n(nm+1))


最后



这是我们「刷穿 LeetCode」系列文章的第 No.686 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
6月前
【题型总结】动态规划之按照某种形式分割数组以获得最值
【题型总结】动态规划之按照某种形式分割数组以获得最值
75 0
|
6月前
|
机器学习/深度学习 算法 测试技术
【组合数学 容斥原理 逆向思考】2930. 重新排列后包含指定子字符串的字符串数目
【组合数学 容斥原理 逆向思考】2930. 重新排列后包含指定子字符串的字符串数目
|
5月前
|
存储 算法 数据可视化
深入解析力扣161题:相隔为 1 的编辑距离(逐字符比较与动态规划详解)
深入解析力扣161题:相隔为 1 的编辑距离(逐字符比较与动态规划详解)
|
6月前
leetcode-686:重复叠加字符串匹配
leetcode-686:重复叠加字符串匹配
33 0
|
6月前
|
算法
【算法总结】字符串哈希
【算法总结】字符串哈希
105 0
|
6月前
|
算法
回溯-求出数组的所有子序列【学习算法】
回溯-求出数组的所有子序列【学习算法】
48 0
|
算法 索引
LeetCode-686 重复叠加字符串匹配
LeetCode-686 重复叠加字符串匹配
|
算法
Manachar算法(马拉车算法):快速求取最长回文子串
求取最长回文子串的长度的最佳方法为 Manachar算法 ,俗称马拉车算法。常见的方法就是中心扩散法,但时间复杂度较高。
95 0
Manachar算法(马拉车算法):快速求取最长回文子串
|
算法
算法:next数组的求法详解
算法:next数组的求法详解
860 0
算法:next数组的求法详解