一次难得的分库分表实践(下)

简介: 一次难得的分库分表实践

业务兼容


同时分表之后还需要兼容其他业务;比如原有的报表业务、分页查询等,现在来看看我们是如何处理的。


报表


首先是报表,没分表之前之间查询一张表就搞定了,现在不同,由一张表变为 N 张表。

所以原有的查询要改为遍历所有的分表,考虑到性能可以利用多线程并发查询分表数据然后汇总。


不过只依靠 Java 来对这么大量的数据做统计分析还是不现实,刚开始可以应付过去,后续还得用上大数据平台来处理。


查询


再一个是查询,原有的分页查询肯定是不能用了,毕竟对上亿的数据分页其实没什么意义。


只能提供通过分表字段的查询,比如是按照订单 ID 分表,那查询条件就得带上这个字段,不然就会涉及到遍历所有表。


这也是所有分表之后都会遇到的一个问题,除非不用 MySQL 这类关系型数据库。


分库


分表完成后可以解决单表的压力,但数据库本身的压力却没有下降。


我们在完成分表之后的一个月内又由于数据库里“其他表”的写入导致整个数据库 IO 增加,而且这些“其他表”还和业务关系不大。


也就是说一些可有可无的数据导致了整体业务受影响,这是非常不划算的事情。


于是我们便把这几张表单独移到一个新的数据库中,完全和现有的业务隔离开来。


这样就会涉及到几个改造:


  1. 应用自身对这些数据的查询、写入都要改为调用一个独立的 Dubbo 服务,由这个服务对迁移的表进行操作。


  1. 暂时不做数据迁移,所以查询时也得按照分表那样做一个兼容,如果查询老数据就要在当前库查询,新数据就要调用 Dubbo 接口进行查询。


  1. 对这些表的一些关联查询也得改造为查询 Dubbo 接口,在内存中进行拼接即可。


  1. 如果数据量确实很大,也可将同步的 Dubbo 接口换为写入消息队列来提高吞吐量。


目前我们将这类数据量巨大但对业务不太影响的表单独迁到一个库后,数据库的整体 IO 下降明显,业务也恢复正常。


总结


最后我们还需要做一步历史数据归档的操作,将 N 个月之前的数据要定期迁移到 HBASE 之类存储,保证 MySQL 中的数据一直保持在一个可接受的范围。


而归档数据的查询便依赖于大数据提供服务。


本次分库分表是一次非常难得的实践操作,网上大部分的资料都是在汽车出厂前就换好了轮胎。


而我们大部分碰到的场景都是要对高速路上跑着的车子换胎,一不小心就“车毁人亡”!



相关文章
|
Java 中间件 数据库连接
分库分表的4种方案
分库分表的4种方案
895 0
|
6月前
|
SQL 存储 数据库连接
什么是分库分表,为什么要分库分表?
笔者经常将缓存、分库分表、消息队列定义为高并发三剑客。开发互联网应用系统时,分库分表是一个绕不开的技术点。 这篇文章,我们会探讨如下问题:
|
6月前
|
缓存 监控 Java
分库分表带来的问题
分库分表带来的问题
|
弹性计算 Java 关系型数据库
分库分表比较推荐的方案
ShardingSphere 绝对可以说是当前分库分表的首选!ShardingSphere 的功能完善,除了支持读写分离和分库分表,还提供分布式事务、数据库治理等功能。另外,ShardingSphere 的生态体系完善,社区活跃,文档完善,更新和发布比较频繁
184 0
|
11月前
|
数据库
分库分表是一种数据库优化方式
分库分表是一种数据库优化方式
66 1
|
存储 负载均衡 Oracle
分库分表介绍
分库分表是一种用于解决大规模数据存储和查询性能问题的数据库架构设计技术。它将一个数据库拆分成多个独立的数据库实例(分库),并将每个数据库实例的表进一步拆分成多个子表(分表)。这样可以提高数据库的并发处理能力和查询性能。
249 0
|
算法 测试技术 Apache
分库分表实战
分库分表实战
257 0
|
存储 SQL 运维
2、【ShardingSphere】做优化上来就分库分表?请慎重分库分表
读写分离,基本是目前商业开发最可靠的手段了。让我们有了更好的数据查询效率。最大的缺陷在于读写分离会增加MySQL服务器的预算。同时MySQL在高并发的情况下,slave也会有延迟,错误等。
297 0
|
存储 算法 数据库
一次难得的分库分表实践(上)
一次难得的分库分表实践
|
消息中间件 中间件 数据库
也谈分库分表在实际应用的实践(上)
也谈分库分表在实际应用的实践(上)
144 0
也谈分库分表在实际应用的实践(上)