关于RDS实例CPU超过100%的分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

经常听见用户说自己的rds实例cpu超过100%,通常这种情况都是由于sql性能问题导致的,下面我用一则案例来分析:

用户实例zuowenwang反映cpu超过100%,实例偶尔出现卡住的现象;

1.原理:cpu消耗过大通常情况下都是有慢sql造成的,这里的慢sql包括全表扫描,扫描数据量过大,内存排序,磁盘排序,锁争用等待等;

2.表现现象sql执行状态为:sending data,Copying to tmp table,Copying to tmp table on disk,Sorting result,locked;

3.解决方法:用户可以登录到rds,通过show processlist查看当前正在执行的sql,当执行完show processlist后出现大量的语句,通常其状态出现sending data,Copying to tmp table,Copying to tmp table on disk,Sorting result, Using filesort 都是sql有性能问题;

A.sending data表示:sql正在从表中查询数据,如果查询条件没有适当的索引,则会导致sql执行时间过长;

B.Copying to tmp table on disk:出现这种状态,通常情况下是由于临时结果集太大,超过了数据库规定的临时内存大小,需要拷贝临时结果集到磁盘上,这个时候需要用户对sql进行优化;

C.Sorting result, Using filesort:出现这种状态,表示sql正在执行排序操作,排序操作都会引起较多的cpu消耗,通常的优化方法会添加适当的索引来消除排序,或者缩小排序的结果集;

通过show processlist发现如下sql:

Sql A.

| 2815961 | sanwenba  | 10.241.142.197:55190 | sanwenba | Query   | 0 | Sorting RESULT       | 
SELECT z.aid,z.subject FROM www_zuowen z RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid 
ORDER BY za.viewnum DESC LIMIT 10;

性能sql:

SELECT z.aid,z.subject FROM www_zuowen z RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid
 ORDER BY za.viewnum DESC LIMIT 10;

用explain 查看执行计划:

sanwenba@3018 10:00:54>explain SELECT z.aid,z.subject FROM www_zuowen z 
RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid ORDER BY za.viewnum DESC LIMIT 10;
 
+----+-------------+-------+--------+---------------+---------+---------+-----------------+------
 
| id | select_type | TABLE | TYPE   | possible_keys | KEY     | key_len | REF     | ROWS   | Extra |
 
+----+-------------+-------+--------+---------------+---------+---------+-----------------+------
 
|  1 | SIMPLE      | za    | INDEX  | NULL          | viewnum | 6       | NULL            | 537029 | USING INDEXUSING filesort |
 
|  1 | SIMPLE      | z     | eq_ref | PRIMARY       | PRIMARY | 3       | sanwenba.za.aid |      1 |  |

添加适当索引消除排序:

sanwenba@3018 10:02:33 ALTER TABLE www_zuowenaddviews ADD INDEX ind_www_zuowenaddviews_viewnum(viewnum);
sanwenba@3018 10:03:27explain SELECT z.aid,z.subject FROM www_zuowen z RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid ORDER BY za.viewnum DESC LIMIT 10;
+----+-------------+-------+--------+---------------+--------------------------------+---------+-
 
| id | select_type | TABLE | TYPE   | possible_keys | KEY  | key_len | REF      | ROWS | Extra       |
 
+----+-------------+-------+--------+---------------+--------------------------------+---------+-
 
|  1 | SIMPLE      | za    | INDEX  | NULL  | ind_www_zuowenaddviews_viewnum | 3       | NULL       |   10 | USING INDEX |
 
|  1 | SIMPLE    | z     | eq_ref | PRIMARY PRIMARY | 3  | sanwenba.za.aid |    1 |             |
 
+----+-------------+-------+--------+---------------+--------------------------------+---------+-

Sql B:

| 2825321 | netzuowen | 10.200.120.41:44172  | netzuowen | Query |     2 | Copying TO tmp TABLE ON disk 
SELECT * FROM `www_article` WHERE 1=1 ORDER BY rand() LIMIT 0,30

这种sql order by rand()同样也会出现排序;

netzuowen@3018 10:23:55
EXPLAIN  SELECT * FROM `www_zuowensearch` WHERE checked = 1 ORDER BY rand() LIMIT 0,10 ;
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
 
| id | select_type | TABLE            | TYPE | possible_keys | KEY    | key_len | REF   | ROWS | Extra|
 
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
 
|  1 | SIMPLE      | www_zuowensearch | REF  | newest        | newest | 1       | const | 1443 | USING TEMPORARYUSING filesort |
 
+----+-------------+------------------+------+---------------+--------+---------+-------+------+

这种随机抽取一批记录的做法性能是很差的,表中的数据量越大,性能就越差:

解决方法如下:

http://www.piaoyi.org/php/MySQL-Order-By-Rand.html

第一种方案,即原始的 Order By Rand() 方法:

$sql=”SELECT * FROM content ORDER BY rand() LIMIT 12″;

$result=mysql_query($sql,$conn);

$n=1;

$rnds=”;

while($row=mysql_fetch_array($result)){

$rnds=$rnds.$n.”. <a href=’show”.$row[‘id’].”-“.strtolower(trim($row[‘title’])).”‘>”.$row[‘title’].”</a><br />\n”;

$n++;

}

3万条数据查12条随机记录,需要0.125秒,随着数据量的增大,效率越来越低。

第二种方案,改进后的 JOIN 方法:

for($n=1;$n<=12;$n++){

$sql=”SELECT * FROM `content` AS t1

JOIN (SELECT ROUND(RAND() * (SELECT MAX(id) FROM `content`)) AS id) AS t2

WHERE t1.id >= t2.id ORDER BY t1.id ASC LIMIT 1″;

$result=mysql_query($sql,$conn);

$yi=mysql_fetch_array($result);

$rnds = $rnds.$n.”. <a href=’show”.$yi[‘id’].”-“.strtolower(trim($yi[‘title’])).”‘>”.$yi[‘title’].”</a><br />\n”;

}

3万条数据查12条随机记录,需要0.004秒,效率大幅提升,比第一种方案提升了约30倍。缺点:多次select查询,IO开销大。

第三种方案,SQL语句先随机好ID序列,用 IN 查询(飘易推荐这个用法,IO开销小,速度最快):

$sql=”SELECT MAX(id),MIN(id) FROM content”;

$result=mysql_query($sql,$conn);

$yi=mysql_fetch_array($result);

$idmax=$yi[0];

$idmin=$yi[1];

$idlist=”;

for($i=1;$i<=20;$i++){

if($i==1){ $idlist=mt_rand($idmin,$idmax); }

else{ $idlist=$idlist.’,’.mt_rand($idmin,$idmax); }

}

$idlist2=”id,”.$idlist;

$sql=”select * from content where id in ($idlist) order by field($idlist2) LIMIT 0,12″;

$result=mysql_query($sql,$conn);

$n=1;

$rnds=”;

while($row=mysql_fetch_array($result)){

$rnds=$rnds.$n.”. <a href=’show”.$row[‘id’].”-“.strtolower(trim($row[‘title’])).”‘>”.$row[‘title’].”</a><br />\n”;

$n++;

}

3万条数据查12条随机记录,需要0.001秒,效率比第二种方法又提升了4倍左右,比第一种方法提升120倍。注,这里使用了 order by field($idlist2) 是为了不排序,否则 IN 是自动会排序的。缺点:有可能遇到ID被删除的情况,所以需要多选几个ID。

C.出现sending data的情况:

| 2833185 | sanwenba        | 10.241.91.81:45964   | sanwenba | Query    |     1 | Sending DATA   |
 SELECT * FROM `www_article` WHERE CONCAT(subject,description) LIKE '%??%' ORDER BY aid DESC LIMIT 75,15

性能sql:

SELECT * FROM `www_article` WHERE CONCAT(subject,description) like ‘%??%’ ORDER BY aid desc LIMIT 75,15

这种sql是典型的sql分页写法不规范的情况,需要将sql进行改写:

SELECT * FROM www_article t1,(SELECT aid FROM www_article WHERE CONCAT(subject,description) LIKE '%??%' ORDER BY aid DESC LIMIT 75,15) t2 WHERE t1.aid=t2.aid;

注意这里的索引需要改用覆盖索引:aid+ subject+description

优化后的结果:

总结:

Sql优化是性能优化的最后一步,虽然位于塔顶,他最直影响用户的使用,但也是最容易优化的步骤,往往效果最直接。

RDS-mysql由于有资源的隔离,不同的实例规格拥有的iops能力不同,比如新1型提供的iops为150个,也就是每秒能够提供150次的随机磁盘io操作,所以如果用户的数据量很大,内存很小,由于iops的限制,一条慢sql就很有可能消耗掉所有的io资源,而影响其他的sql查询,对于数据库来说就是所有的sql需要执行很长的时间才能返回结果,对于应用来说就会造成整体响应的变慢;所以优化永不止境,既可以帮助你的系统稳定,同时又可以节约你的成本,何乐不为。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
18天前
|
监控 关系型数据库 MySQL
如何解决 MySQL 数据库服务器 CPU 飙升的情况
大家好,我是 V 哥。当 MySQL 数据库服务器 CPU 飙升时,如何快速定位和解决问题至关重要。本文整理了一套实用的排查和优化套路,包括使用系统监控工具、分析慢查询日志、优化 SQL 查询、调整 MySQL 配置参数、优化数据库架构及检查硬件资源等步骤。通过一个电商业务系统的案例,详细展示了从问题发现到解决的全过程,帮助你有效降低 CPU 使用率,提升系统性能。关注 V 哥,掌握更多技术干货。
101 0
|
1月前
|
缓存 NoSQL 关系型数据库
MySQL原理简介—4.深入分析Buffer Pool
本文介绍了MySQL的Buffer Pool机制,包括其作用、配置方法及内部结构。Buffer Pool是MySQL用于缓存磁盘数据页的关键组件,能显著提升数据库读写性能。默认大小为128MB,可根据服务器配置调整(如32GB内存可设为2GB)。它通过free链表管理空闲缓存页,flush链表记录脏页,并用LRU链表区分冷热数据以优化淘汰策略。此外,还探讨了多Buffer Pool实例、chunk动态调整等优化并发性能的方法,以及如何通过`show engine innodb status`查看Buffer Pool状态。关键词:MySQL内存数据更新机制。
|
2月前
|
关系型数据库 MySQL 数据库
mysql慢查询每日汇报与分析
通过启用慢查询日志、提取和分析慢查询日志,可以有效识别和优化数据库中的性能瓶颈。结合适当的自动化工具和优化措施,可以显著提高MySQL数据库的性能和稳定性。希望本文的详解和示例能够为数据库管理人员提供有价值的参考,帮助实现高效的数据库管理。
57 11
|
2月前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
123 7
MySQL事务日志-Undo Log工作原理分析
|
3月前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
196 11
|
4月前
|
关系型数据库 MySQL 数据库
【赵渝强老师】启动与关闭MySQL数据库实例
MySQL数据库安装完成后,可以通过命令脚本启动、查看状态、配置开机自启、查看自启列表及关闭数据库。本文提供了详细的操作步骤和示例代码,并附有视频讲解。
|
5月前
|
存储 关系型数据库 MySQL
基于案例分析 MySQL 权限认证中的具体优先原则
【10月更文挑战第26天】本文通过具体案例分析了MySQL权限认证中的优先原则,包括全局权限、数据库级别权限和表级别权限的设置与优先级。全局权限优先于数据库级别权限,后者又优先于表级别权限。在权限冲突时,更严格的权限将被优先执行,确保数据库的安全性与资源合理分配。
|
5月前
|
存储 关系型数据库 MySQL
mysql 8.0 的 建表 和八种 建表引擎实例
mysql 8.0 的 建表 和八种 建表引擎实例
63 0
|
5月前
|
存储 关系型数据库 MySQL
Key_Value 形式 存储_5级省市城乡划分代码 (mysql 8.0 实例)
本文介绍了如何使用MySQL8.0数据库中的Key_Value形式存储全国统计用区划代码和城乡划分代码(5级),包括导入数据、通过数学函数提取省市区信息,以及查询5级行政区划的详细数据。
67 0
|
5月前
|
SQL 前端开发 关系型数据库
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
126 0
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )