数据分析python,线性回归

简介: 数据分析python,线性回归

本节是python实现一元回归的代码部分,理论参考链接: link.
代码下载地址link.
代码可直接赋值运行,如有问题请留言

1 环境准备

import numpy as np
import matplotlib.pyplot as pl
import matplotlib
matplotlib.rcParams['font.sans-serif']='SimHei'
matplotlib.rcParams['font.family']='sans-serif'
matplotlib.rcParams['axes.unicode_minus']=False

这些是需要的python组件和画图需要的包,matplotlib是画图的设置

2 读取文件方法设置

def loadDataset(filename):
    X=[]
    Y=[]
    with open(filename,'rb') as f:
        for idx,line in enumerate(f):
            line=line.decode('utf-8').strip()
            if not line:
                continue
                
            eles=line.split(',')
            
            if idx==0:
                numFea=len(eles)
                
            eles=list(map(float,eles))#map返回一个迭代对象
            
            X.append(eles[:-1])
            Y.append([eles[-1]])
    return np.array(X),np.array(Y)

3 预测值方法

def h(theta,X):

return np.dot(X,theta)

4 完成方法设计

def J(theta,X,Y):

return np.sum(np.dot((h(theta,X)-Y).T,(h(theta,X)-Y))/(2*m))

5 梯度下降方法

def bgd(alpha,maxloop,epsilon,X,Y):
    m,n=X.shape
    
    theta=np.zeros((2,1))
    
    count=0
    converged=False
    error=np.inf
    errors=[]
    thetas={0:[theta[0,0]],1:[theta[1,0]]}
    
    while count<=maxloop:
        if(converged):
            break
        
        count=count+1
        temp1=theta[0,0]-alpha/m*(h(theta,X)-Y).sum()
        temp2=theta[1,0]-alpha/m*(np.dot(X[:,1][:,np.newaxis].T,(h(theta,X)-Y))).sum()
        
        #同步更新
        theta[0,0]=temp1
        theta[1,0]=temp2
        thetas[0].append(temp1)
        thetas[1].append(temp2)
        
        error=J(theta,X,Y)
        errors.append(error)
        
        if(error<epsilon):
            converged=True
    return theta,errors,thetas

6 读取文件

先预览下读取的数据,这里用的一组不太好的数据
在这里插入图片描述

X,Y=loadDataset('./data/price_diff.csv')
print(X.shape)
print(Y.shape)

(243, 1)
(243, 1)

m,n=X.shape
X=np.concatenate((np.ones((m,1)),X),axis=1)
X.shape

(243, 2)

7 模型参数设置

alpha=0.000000000000000003
maxloop=3000
epsilon=0.01
result=bgd(alpha,maxloop,epsilon,X,Y)
theta,errors,thetas=result

xCopy=X.copy()
xCopy.sort(0)
yHat=h(theta,xCopy)
xCopy[:,1].shape,yHat.shape,theta.shape

((243,), (243, 1), (2, 1))

8 结果绘图

pl.xlabel(u'1')
pl.ylabel(u'2')
pl.plot(xCopy[:,1],yHat,color='red')
pl.scatter(X[:,1].flatten(),Y.T.flatten())
pl.show()

在这里插入图片描述
误差与迭代次数绘图

pl.xlim(-1,3000)

pl.xlabel(u'迭代次数')
pl.ylabel(u'代价函数')
pl.plot(range(len(errors)),errors)
pl.show()

在这里插入图片描述

目录
相关文章
|
23天前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
46 2
|
23天前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
35 1
|
5天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
19 0
|
14天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
24天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
42 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
24天前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
40 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
6天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
17 1
|
11天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
18 2
|
12天前
|
机器学习/深度学习 数据可视化 Python
使用最小二乘法进行线性回归(Python)
【10月更文挑战第28天】本文介绍了使用Python实现最小二乘法进行线性回归的步骤,包括数据准备、计算均值、计算斜率和截距、构建线性回归方程以及预测和可视化结果。通过示例代码展示了如何从创建数据点到最终绘制回归直线的完整过程。
|
12天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
29 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式