js基本搜索算法实现与170万条数据下的性能测试

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: 今天让我们来继续聊一聊js算法,通过接下来的讲解,我们可以了解到搜索算法的基本实现以及各种实现方法的性能,进而发现for循环,forEach,While的性能差异,我们还会了解到如何通过web worker做算法分片,极大的提高算法的性能。同时我还会简单介绍一下经典的二分算法,哈希表查找算法,但这些不是本章的重点,之后我会推出相应的文章详细介绍这些高级算法,感兴趣的朋友可以关注我的专栏,或一起探讨。


前言


今天让我们来继续聊一聊js算法,通过接下来的讲解,我们可以了解到搜索算法的基本实现以及各种实现方法的性能,进而发现for循环,forEach,While的性能差异,我们还会了解到如何通过web worker做算法分片,极大的提高算法的性能。


同时我还会简单介绍一下经典的二分算法,哈希表查找算法,但这些不是本章的重点,之后我会推出相应的文章详细介绍这些高级算法,感兴趣的朋友可以关注我的专栏,或一起探讨。


对于算法性能,我们还是会采用上一章《前端算法系列》如何让前端代码速度提高60倍中的getFnRunTime函数,大家感兴趣的可以查看学习,这里我就不做过多说明。

在上一章《前端算法系列》如何让前端代码速度提高60倍我们模拟了19000条数据,这章中为了让效果更明显,我将伪造170万条数据来测试,不过相信我,对js来说这不算啥。。。


1.for循环搜索


基本思路:通过for循环遍历数组,找出要搜索的值在数组中的索引,并将其推进新数组


代码实现如下:


const getFnRunTime = require('./getRuntime');
 /**
  * 普通算法-for循环版
  * @param {*} arr 
  * 耗时:7-9ms
  */
 function searchBy(arr, value) {
     let result = [];
    for(let i = 0, len = arr.length; i < len; i++) {
        if(arr[i] === value) {
            result.push(i);
        }
    }
    return result
 }
 getFnRunTime(searchBy, 6)

测试n次稳定后的结果如图:



2.forEach循环


基本思和和for循环类似:

/**
  * 普通算法-forEach循环版
  * @param {*} arr 
  * 耗时:21-24ms
  */
 function searchByForEach(arr, value) {
    let result = [];
    arr.forEach((item,i) => {
        if(item === value) {
            result.push(i);
        }
    })
   return result
}

耗时21-24毫秒,可见性能不如for循环(先暂且这么说哈,本质也是如此)。


3.while循环


代码如下:

/**
  * 普通算法-while循环版
  * @param {*} arr 
  * 耗时:11ms
  */
 function searchByWhile(arr, value) {
     let i = arr.length,
     result = [];
    while(i) {
        if(arr[i] === value) {
            result.push(i);
        }
        i--;
    }
   return result
}

可见while和for循环性能差不多,都很优秀,但也不是说forEach性能就不好,就不使用了。foreach相对于for循环,代码减少了,但是foreach依赖IEnumerable。在运行时效率低于for循环。但是在处理不确定循环次数的循环,或者循环次数需要计算的情况下,使用foreach比较方便。而且foreach的代码经过编译系统的代码优化后,和for循环的循环类似。


4.二分法搜索


二分法搜索更多的应用场景在数组中值唯一并且有序的数组中,这里就不比较它和for/while/forEach的性能了。


基本思路:从序列的中间位置开始比较,如果当前位置值等于要搜索的值,则查找成功;若要搜索的值小于当前位置值,则在数列的前半段中查找;若要搜索的值大于当前位置值则在数列的后半段中继续查找,直到找到为止

代码如下:

/**
   * 二分算法
   * @param {*} arr 
   * @param {*} value 
   */
  function binarySearch(arr, value) {
    let min = 0;
    let max = arr.length - 1;
    while (min <= max) {
      const mid = Math.floor((min + max) / 2);
      if (arr[mid] === value) {
        return mid;
      } else if (arr[mid] > value) {
        max = mid - 1;
      } else {
        min = mid + 1;
      }
    }
    return 'Not Found';
  }

在数据量很大的场景下,二分法效率很高,但不稳定,这也是其在大数据查询下的一点小小的劣势。


5.哈希表查找


哈希表查找又叫散列表查找,通过查找关键字不需要比较就可以获得需要记录的存储位置,它是通过在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使得每个关键字key对应一个存储位置f(key)

哈希表查找的使用场景:


  • 哈希表最适合的求解问题是查找与给定值相等的记录


  • 哈希查找不适合同样的关键字对应多条记录的情况


  • 不适合范围查找,比如查找年龄18~22岁的同学


在这我先给出一个最简版的hashTable,方便大家更容易的理解哈希散列:


/**
 * 散列表
 * 以下方法会出现数据覆盖的问题
 */
function HashTable() {
  var table = [];
  // 散列函数
  var loseloseHashCode = function(key) {
    var hash = 0;
    for(var i=0; i<key.length; i++) {
      hash += key.charCodeAt(i);
    }
    return hash % 37
  };
  // put
  this.put = function(key, value) {
    var position = loseloseHashCode(key);
    table[position] = value;
  }
  // get
  this.get = function(key) {
    return table[loseloseHashCode(key)]
  }
  // remove
  this.remove = function(key) {
    table[loseloseHashCode(key)] = undefined;
  }
}

该方法可能会出现数据冲突的问题,不过也有解决方案,由于这里涉及的知识点比较多,后期我会专门推出一篇文章来介绍:


  • 开放定址法


  • 二次探测法


  • 随机探测法


使用web worker优化


通过以上的方法,我们已经知道各种算法的性能和应用场景了,我们在使用算法时,还可以通过web worker来优化,让程序并行处理,比如将一个大块数组拆分成多块,让web worker线程帮我们去处理计算结果,最后将结果合并,通过worker的事件机制传给浏览器,效果十分显著。


总结


  1. 对于复杂数组查询,for/while性能高于forEach等数组方法


  1. 二分查找法的O(logn)是一种十分高效的算法。不过它的缺陷也很明显:必须有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组。数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组的时候会降低效率。


  1. 哈希表查找的基本用法及使用场景。


  1. 条件允许的话,我们可以用web worker来优化算法,让其在后台并行执行。


好啦,这篇文章虽然比较简单,但十分重要,希望大家对搜索算法有更加直观的认识,也希望大家有更好的方法,一起探讨交流。


接下来会推出更多优秀的算法,敬请期待哦~




相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
目录
相关文章
|
14天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
132 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
3天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
24 9
|
9天前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
23 7
|
7天前
|
存储 监控 JavaScript
深度探秘:运用 Node.js 哈希表算法剖析员工工作时间玩游戏现象
在现代企业运营中,确保员工工作时间高效专注至关重要。为应对员工工作时间玩游戏的问题,本文聚焦Node.js环境下的哈希表算法,展示其如何通过快速查找和高效记录员工游戏行为,帮助企业精准监测与分析,遏制此类现象。哈希表以IP地址等为键,存储游戏网址、时长等信息,结合冲突处理与动态更新机制,确保数据完整性和时效性,助力企业管理层优化工作效率。
20 3
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
71 1
|
2月前
|
监控 JavaScript 算法
深度剖析 Vue.js 响应式原理:从数据劫持到视图更新的全流程详解
本文深入解析Vue.js的响应式机制,从数据劫持到视图更新的全过程,详细讲解了其实现原理和运作流程。
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
212 1
|
2月前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
2月前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
2月前
|
数据采集 存储 JavaScript
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
本文介绍了如何使用Puppeteer和Node.js爬取大学招生数据,并通过代理IP提升爬取的稳定性和效率。Puppeteer作为一个强大的Node.js库,能够模拟真实浏览器访问,支持JavaScript渲染,适合复杂的爬取任务。文章详细讲解了安装Puppeteer、配置代理IP、实现爬虫代码的步骤,并提供了代码示例。此外,还给出了注意事项和优化建议,帮助读者高效地抓取和分析招生数据。
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
下一篇
开通oss服务