Google Earth Engine——TRMM/3B43在每个日历月执行一次,通过将3小时合并的高质量/红外估计值(3B42)与每月累积的全球降水气候学中心(GPCC)雨量计分析相结合降水预测

简介: Google Earth Engine——TRMM/3B43在每个日历月执行一次,通过将3小时合并的高质量/红外估计值(3B42)与每月累积的全球降水气候学中心(GPCC)雨量计分析相结合降水预测

This collection is no longer being updated. See IMERG monthly

This dataset algorithmically merges microwave data from multiple satellites, including SSMI, SSMIS, MHS, AMSU-B and AMSR-E, each inter-calibrated to the TRMM Combined Instrument.

Algorithm 3B43 is executed once per calendar month to produce the single, best-estimate precipitation rate and RMS precipitation-error estimate field (3B43) by combining the 3-hourly merged high-quality/IR estimates (3B42) with the monthly accumulated Global Precipitation Climatology Centre (GPCC) rain gauge analysis.

All of the global precipitation datasets have some calibrating data source, which is necessary to control bias differences between contributing satellites. The multi-satellite data are averaged to the monthly scale and combined with the Global Precipitation Climatology Centre's (GPCC) monthly surface precipitation gauge analysis. In each case the multi-satellite data are adjusted to the large-area mean of the gauge analysis, where available (mostly over land), and then combined with the gauge analysis using a simple inverse estimated-random-error variance weighting. Regions with poor gauge coverage, like central Africa and the oceans, have a higher weighting on the satellite input.

See the algorithm description and the file specification for details.


该文集已不再更新。见IMERG月刊

该数据集通过算法合并来自多颗卫星的微波数据,包括SSMI、SSMIS、MHS、AMSU-B和AMSR-E,每颗卫星都与TRMM组合仪器进行了相互校准。

算法3B43在每个日历月执行一次,通过将3小时合并的高质量/红外估计值(3B42)与每月累积的全球降水气候学中心(GPCC)雨量计分析相结合,产生单一的、最佳估计降水率和降水误差估计场(3B43)。

所有的全球降水数据集都有一些校准数据源,这对于控制贡献卫星之间的偏差差异是必要的。多卫星数据被平均到月度尺度,并与全球降水气候学中心(GPCC)的月度地面降水仪分析相结合。在每一种情况下,多卫星数据都被调整为水尺分析的大面积平均值,如果有的话(主要是在陆地上),然后使用一个简单的反估计-随机误差方差加权法与水尺分析相结合。仪表覆盖率低的地区,如非洲中部和海洋,对卫星输入的权重更高。

详见算法描述和文件说明。

Dataset Availability

1998-01-01T00:00:00 - 2019-12-01T00:00:00

Dataset Provider

NASA GES DISC at NASA Goddard Space Flight Center

Collection Snippet

ee.ImageCollection("TRMM/3B43V7")

Resolution

27830 meters

Bands Table

Name Description Min* Max* Units
precipitation Merged microwave/IR precipitation estimate 0 6.73 mm/hr
relativeError Merged microwave/IR precipitation random error estimate 0.001 16.36 mm/hr
gaugeRelativeWeighting Relative weighting of the rain gauges used in calibration 0 100 %


* = Values are estimated

使用说明:

This dataset is in the public domain and is available without restriction on use and distribution. See NASA's Earth Science Data & Information Policy for additional information.

引用:

Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, E.J. Nelkin, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor., 4(6), 1147-1167.

Huffman, G.J., 1997: Estimates of Root-Mean-Square Random Error for Finite Samples of Estimated Precipitation, J. Appl. Meteor., 1191-1201.

Huffman, G.J., 2012: Algorithm Theoretical Basis Document (ATBD) Version 3.0 for the NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (I-MERG). GPM Project, Greenbelt, MD, 29 pp.

Huffman, G.J., R.F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolph, and U. Schneider, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset, Bul. Amer. Meteor. Soc., 78, 5-20.

Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F. Stocker, D.B. Wolff, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor., 8(1), 38-55.

Huffman, G.J., R.F. Adler, M. Morrissey, D.T. Bolvin, S. Curtis, R. Joyce, B McGavock, J. Susskind, 2001: Global Precipitation at One-Degree Daily Resolution from Multi-Satellite Observations. J. Hydrometeor., 2(1), 36-50.

Huffman, G.J., R.F. Adler, B. Rudolph, U. Schneider, and P. Keehn, 1995: Global Precipitation Estimates Based on a Technique for Combining Satellite-Based Estimates, Rain Gauge Analysis, and NWP Model Precipitation Information, J. Clim., 8, 1284-1295

代码:

var dataset = ee.ImageCollection('TRMM/3B43V7')
                  .filter(ee.Filter.date('2018-04-01', '2018-05-01'));
var precipitation = dataset.select('precipitation');
var precipitationVis = {
  min: 0.1,
  max: 1.2,
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'],
};
Map.setCenter(6.746, 46.529, 3);
Map.addLayer(precipitation, precipitationVis, 'Precipitation');


相关文章
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4131 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
461 0
|
2月前
|
数据采集 XML 监控
Google Search Console 做SEO分析之“已发现未编入” 与 “已抓取未编入” 有什么区别?
在 Google Search Console (GSC) 中,“已发现 - 尚未编入索引”(Discovered - currently not indexed) 和 “已抓取 - 尚未编入索引”(Crawled - currently not indexed) 是两种不同的状态,如果你的站点也有这两种状态就需要注意优化了。
83 0
|
7月前
|
机器学习/深度学习 人工智能 JSON
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
大型语言模型(LLM)的发展迅速,从简单对话系统进化到能执行复杂任务的先进模型。然而,这些模型的规模和计算需求呈指数级增长,给学术界和工业界带来了挑战。为解决这一问题,知识蒸馏技术应运而生,旨在将大型模型的知识转移给更小、更易管理的学生模型。Google Research 提出的“Distilling Step-by-Step”方法不仅减小了模型规模,还通过提取推理过程使学生模型在某些任务上超越教师模型。该方法通过多任务学习框架,训练学生模型同时预测标签和生成推理过程,从而实现更高效、更智能的小型化模型。这为资源有限的研究者和开发者提供了新的解决方案,推动了AI技术的普及与应用。
309 19
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
|
机器学习/深度学习 自然语言处理 对象存储
[wordpiece]论文分析:Google’s Neural Machine Translation System
[wordpiece]论文分析:Google’s Neural Machine Translation System
207 1
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
1034 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
机器学习/深度学习 数据采集 数据可视化
R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化
R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化
|
数据可视化 搜索推荐 数据挖掘
R语言Pearson相关性分析就业率和“性别平等”谷歌搜索热度google trend时间序列数据可视化
R语言Pearson相关性分析就业率和“性别平等”谷歌搜索热度google trend时间序列数据可视化
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
200 0

热门文章

最新文章

推荐镜像

更多