【图神经网络DGL】GCN应用于Karate Club

简介: Karate club是一个社交网络,包括34个成员,并在俱乐部外互动的成员之间建立成对链接。 俱乐部随后分为两个社区,由教员(节点0)和俱乐部主席(节点33)领导。 网络以如下方式可视化,并带有表示社区的颜色(如下图)。

一、题目描述

Karate club是一个社交网络,包括34个成员,并在俱乐部外互动的成员之间建立成对链接。 俱乐部随后分为两个社区,由教员(节点0)和俱乐部主席(节点33)领导。 网络以如下方式可视化,并带有表示社区的颜色(如下图)。


任务:预测给定社交网络本身每个成员倾向于加入哪一侧的社区(0或33)。

image.png


二、步骤

2.1 在DGL中创建网络图

这里可以复习上一节的【图神经网络DGL】数据封装和消息传递机制 的数据封装。

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 17 21:16:42 2021
@author: 86493
"""
import dgl
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.animation as animation
import matplotlib.pyplot as plt
def build_karate_club_graph():
    # All 78 edges are stored in two numpy arrays. One for source endpoints
    # while the other for destination endpoints.
    src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
                    10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
                    25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
                    32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
                    33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
    dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
                    5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
                    24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
                    29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
                    31, 32])
    # Edges are directional in DGL; Make them bi-directional.
    u = np.concatenate([src, dst])
    v = np.concatenate([dst, src])
    # Construct a DGLGraph
    return dgl.DGLGraph((u, v))
G = build_karate_club_graph() 
print('We have %d nodes.' % G.number_of_nodes()) 
print('We have %d edges.' % G.number_of_edges())
# We have 34 nodes.
# We have 156 edges.
import networkx as nx
# 由于实际图形是无向的,因此我们去掉边的方向,以达到可视化的目的
nx_G = G.to_networkx().to_undirected()
# 为了图更加美观,我们使用Kamada-Kawaii layout 
pos = nx.kamada_kawai_layout(nx_G)
nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]])

image.png

后面代码中我们就把draw的这块封装在一个visual函数内。

2.2 将特征分配给节点or边

GNN将特征与节点和边关联进行训练,本题分类中,每个节点对应一个独热编码。在DGL中,可通过一个特征向量为所有的节点添加特征,该张量沿着第一维处理。

# 对角矩阵
G.ndata['feat'] = torch.eye(34)
print(torch.eye(34))
# 打印出label为2的节点的特征
a = G.nodes[2].data['feat']
print(a)
# 打印出label为5和6的节点的特征
b = G.nodes[[5, 6]].data['feat']
print(b)

即如下创建一个对角矩阵:

tensor([[1., 0., 0.,  ..., 0., 0., 0.],
        [0., 1., 0.,  ..., 0., 0., 0.],
        [0., 0., 1.,  ..., 0., 0., 0.],
        ...,
        [0., 0., 0.,  ..., 1., 0., 0.],
        [0., 0., 0.,  ..., 0., 1., 0.],
        [0., 0., 0.,  ..., 0., 0., 1.]])

结果为:

tensor([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
tensor([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

不过这里我们可以使用nn.embedding

    ## 对 34 个节点做 embedding
    embed = nn.Embedding(34, 5)  # 34 nodes with embedding dim equal to 5
    print(embed.weight)
    G.ndata['feat'] = embed.weight
    # print out node 2's input feature
    print(G.ndata['feat'][2])
    # print out node 10 and 11's input features
    print(G.ndata['feat'][[10, 11]])

2.3 定义一个图卷积神经网络

关于GCN的原理可看原作者的博客:https://tkipf.github.io/graph-convolutional-networks/

图卷积层的数学定义:image.png

其中:


e j i e_{ji}e

ji

是节点j jj到节点i ii的边权值;

初始时可以设c j i c_{ji}c

ji

为norm='none' ,然后在前向传播forward计算时赋值为e j i e_{ji}e

ji

~dgl.nn.pytorch.EdgeWeightNorm对标量边权值进行归一化。

一般来说,节点通过message函数传递消息,然后通过reduce函数进行数据聚合(下面栗子的聚合是通过sum)。


(1)第一层将大小为34的输入特征转换为隐藏的大小为5。

(2)第二层将隐藏层转换为大小为2的输出特征,对应Karate club中的两个组。

from dgl.nn.pytorch import GraphConv
class GCN(nn.Module):
    def __init__(self, in_feats, hidden_size, num_classes):
        super(GCN, self).__init__()
        self.conv1 = GraphConv(in_feats, hidden_size)
        self.conv2 = GraphConv(hidden_size, num_classes)
    def forward(self, g, inputs):
        h = self.conv1(g, inputs)
        h = torch.relu(h)
        h = self.conv2(g, h)
        return h

对应的网络结构很简单:

GCN(
  (gcn1): GCNLayer(
    (linear): Linear(in_features=34, out_features=5, bias=True)
  )
  (gcn2): GCNLayer(
    (linear): Linear(in_features=5, out_features=2, bias=True)
  )
)

2.4 输出准备和初始化

# 数据准备和初始化
inputs = G.ndata['feat']
labeled_nodes = torch.tensor([0, 33])
labels = torch.tensor([0, 1])

2.5 训练和可视化

def train(G, inputs, embed, labeled_nodes,labels):
    net = GCN(5,5,2)
    import itertools
    optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01)
    all_logits = []
    for epoch in range(30):
        logits = net(G, inputs)
        # we save the logits for visualization later
        # detach代表从当前计算图中分离下来的
        all_logits.append(logits.detach()) 
        logp = F.log_softmax(logits, 1)
        # 半监督学习, 只使用标记的节点计算loss
        loss = F.nll_loss(logp[labeled_nodes], labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))
    print(all_logits)

为了可视化,并且在train函数中加入draw函数,这里还用到了生成动态图的animation.FuncAnimation函数。


相反,由于模型为每个节点生成大小为2的输出特征,因此我们可以通过在2D空间中绘制输出特征来可视化。 下面的代码使训练过程从最初的猜测(根本没有正确分类节点)到最终的结果(线性可分离节点)动画化。

    def draw(i):
        cls1color = '#00FFFF'
        cls2color = '#FF00FF'
        pos = {}
        colors = []
        for v in range(34):
            pos[v] = all_logits[i][v].numpy()
            cls = pos[v].argmax()
            colors.append(cls1color if cls else cls2color)
        ax.cla()
        ax.axis('off')
        ax.set_title('Epoch: %d' % i)
        nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
                         with_labels=True, node_size=300, ax=ax)
    nx_G = G.to_networkx().to_undirected()
    fig = plt.figure(dpi=150)
    fig.clf()
    ax = fig.subplots()
    for i in range(30):
        draw(i)
        plt.pause(0.2)
    ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200)
    ani.save('change1.gif', writer='imagemagick', fps=10)
    plt.show()

2.gif

相关文章
|
29天前
|
负载均衡 容灾 Cloud Native
云原生应用网关进阶:阿里云网络ALB Ingress 全能增强
在过去半年,ALB Ingress Controller推出了多项高级特性,包括支持AScript自定义脚本、慢启动、连接优雅中断等功能,增强了产品的灵活性和用户体验。此外,还推出了ingress2Albconfig工具,方便用户从Nginx Ingress迁移到ALB Ingress,以及通过Webhook服务实现更智能的配置校验,减少错误配置带来的影响。在容灾部署方面,支持了多集群网关,提高了系统的高可用性和容灾能力。这些改进旨在为用户提供更强大、更安全的云原生网关解决方案。
414 19
|
28天前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
2月前
|
Kubernetes 安全 Devops
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
82 10
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
|
2月前
|
数据采集 JavaScript 前端开发
异步请求在TypeScript网络爬虫中的应用
异步请求在TypeScript网络爬虫中的应用
|
3月前
|
存储 监控 物联网
计算机网络的应用
计算机网络已深入现代生活的多个方面,包括通信与交流(电子邮件、即时通讯、社交媒体)、媒体与娱乐(在线媒体、在线游戏)、商务与经济(电子商务、远程办公)、教育与学习(在线教育平台)、物联网与智能家居、远程服务(远程医疗、智能交通系统)及数据存储与处理(云计算、数据共享与分析)。这些应用极大地方便了人们的生活,促进了社会的发展。
79 2
计算机网络的应用
|
3月前
|
机器学习/深度学习 运维 安全
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
金融交易网络与蛋白质结构的共同特点是它们无法通过简单的欧几里得空间模型来准确描述,而是需要复杂的图结构来捕捉实体间的交互模式。传统深度学习方法在处理这类数据时效果不佳,图神经网络(GNNs)因此成为解决此类问题的关键技术。GNNs通过消息传递机制,能有效提取图结构中的深层特征,适用于欺诈检测和蛋白质功能预测等复杂网络建模任务。
108 2
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
|
2月前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
3月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
99 8
|
3月前
|
网络协议 物联网 数据处理
C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势
本文探讨了C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势。文章详细讲解了使用C语言实现网络通信程序的基本步骤,包括TCP和UDP通信程序的实现,并讨论了关键技术、优化方法及未来发展趋势,旨在帮助读者掌握C语言在网络通信中的应用技巧。
74 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新