Google Earth Engine ——MACAv2-METDATA 月度数据集涵盖美国本土的 20 个全球气候模型(GCM) 的集合1900-2099年

简介: Google Earth Engine ——MACAv2-METDATA 月度数据集涵盖美国本土的 20 个全球气候模型(GCM) 的集合1900-2099年

MACAv2-METDATA Monthly Summaries: University of Idaho, Multivariate Adaptive Constructed Analogs Applied to Global Climate Models

The MACAv2-METDATA dataset is a collection of 20 global climate models covering the conterminous USA. The Multivariate Adaptive Constructed Analogs (MACA) method is a statistical downscaling method which utilizes a training dataset (i.e. a meteorological observation dataset) to remove historical biases and match spatial patterns in climate model output.

The MACA method was used to downscale the model output from 20 global climate models (GCMs) of the Coupled Model Inter-Comparison Project 5 (CMIP5) for the historical GCM forcings (1950-2005) and the future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP 8.5 scenarios (2006-2100) from the native resolution of the GCMS to 4km.

This version contains monthly summaries.

The full list of models can be found at: https://climate.northwestknowledge.net/MACA/GCMs.php


MACAv2-METDATA 数据集是涵盖美国本土的 20 个全球气候模型的集合。 Multivariate Adaptive Constructed Analogs (MACA) 方法是一种统计降尺度方法,它利用训练数据集(即气象观测数据集)来消除历史偏差并匹配气候模型输出中的空间模式。

MACA 方法用于缩小来自耦合模型相互比较项目 5 (CMIP5) 的 20 个全球气候模型 (GCM) 的模型输出,用于历史 GCM 强迫 (1950-2005) 和未来的代表性浓度路径 (RCP) RCP 4.5 和 RCP 8.5 情景 (2006-2100) 从 GCMS 的原始分辨率到 4km。

此版本包含每月摘要。

完整的模型列表可以在:https://climate.northwestknowledge.net/MACA/GCMs.php

Dataset Availability

1900-01-01T00:00:00 - 2099-12-31T00:00:00

Dataset Provider

University of California Merced

Collection Snippet

Copied

ee.ImageCollection("IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY")

Resolution

2.5 arc minutes

Bands Table

Name Description Min* Max* Units
tasmax Monthly average of maximum daily temperature near surface 251.95 330.64 K
tasmin Monthly average of minimum daily temperature near surface 239.47 316.2 K
huss Monthly average of mean daily specific humidity near surface 0 0.03 kg/kg
pr Total monthly precipitation amount at surface 0 3691.91 mm
rsds Monthly average of mean daily downward shortwave radiation at surface 15.84 419 W/m^2
was Monthly average of mean daily near surface wind speed 0.23 14.16 m/s


* = Values are estimated

Name Type Description
scenario String Name of the CMIP5 scenario, one of 'rcp85', 'rcp45', or 'historical'
model String Name of the CMIP5 model, eg 'inmcm4'
ensemble String Either 'r1i1p1' or 'r6i1p1'
month Double The index of the month in the year, ie 1-12


使用说明:

The MACA datasets were created with funding from the US government and are in the public domain in the United States. For further clarity, unless otherwise noted, the MACA datasets are made available with a Creative Commons CC0 1.0 Universal dedication. In short, John Abatzoglou waives all rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute, and perform the work, even for commercial purposes, all without asking permission. John Abatzoglou makes no warranties about the work, and disclaims liability for all uses of the work, to the fullest extent permitted by applicable law. Users should properly cite the source used in the creation of any reports and publications resulting from the use of this dataset and note the date when the data was acquired. For more information refer to the MACA References and License page.


MACA 数据集是在美国政府的资助下创建的,在美国属于公共领域。为进一步明确起见,除非另有说明,否则 MACA 数据集以 Creative Commons CC0 1.0 通用免费提供。简而言之,John Abatzoglou 在法律允许的范围内放弃版权法规定的全球范围内作品的所有权利,包括所有相关和邻接权。您可以复制、修改、分发和执行作品,即使是出于商业目的,也无需征得许可。在适用法律允许的最大范围内,John Abatzoglou 对作品不作任何保证,并对作品的所有使用不承担任何责任。用户应正确引用因使用此数据集而产生的任何报告和出版物的创建所使用的来源,并注意获取数据的日期。有关更多信息,请参阅 MACA 参考和许可页面。

数据引用:

Abatzoglou J.T. and Brown T.J., A comparison of statistical downscaling methods suited for wildfire applications, International Journal of Climatology(2012) doi:10.1002/joc.2312.

代码:

var dataset = ee.ImageCollection('IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY')
                  .filter(ee.Filter.date('2018-07-01', '2018-08-01'));
var maximumTemperature = dataset.select('tasmax');
var maximumTemperatureVis = {
  min: 290.0,
  max: 314.0,
  palette: ['d8d8d8', '4addff', '5affa3', 'f2ff89', 'ff725c'],
};
Map.setCenter(-115.356, 38.686, 5);
Map.addLayer(maximumTemperature, maximumTemperatureVis, 'Maximum Temperature');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0
|
7月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
223 0