2.11哈希表
一般哈希 —— 模板题 AcWing 840. 模拟散列表
(1) 拉链法
int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; }
(2) 开放寻址法
int h[N]; // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }
字符串哈希 —— 模板题 AcWing 841. 字符串哈希
核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果
typedef unsigned long long ULL; ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64 // 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } // 计算子串 str[l ~ r] 的哈希值 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }
2.11.1 840. 模拟散列表
维护一个集合,支持如下几种操作:
I x,插入一个数 x;
Q x,询问数 x 是否在集合中出现过;
现在要进行 N 次操作,对于每个询问操作输出对应的结果。
输入格式
第一行包含整数 N,表示操作数量。
接下来 N 行,每行包含一个操作指令,操作指令为 I x,Q x 中的一种。
输出格式
对于每个询问指令 Q x,输出一个询问结果,如果 x 在集合中出现过,则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤N≤105
−109≤x≤109
输入样例:
5
I 1
I 2
I 3
Q 2
Q 5
输出样例:
Yes
No
#include<bits/stdc++.h> using namespace std; map<int,bool> mp; int n; int main() { cin>>n; while(n--) { char op; int x; cin>>op>>x; if(op=='I') mp[x]=true; else { if(mp.count(x)) cout<<"Yes"<<endl; else cout<<"No"<<endl; } } return 0; }
2.11.2 841. 字符串哈希
给定一个长度为 n 的字符串,再给定 m 个询问,每个询问包含四个整数 l1,r1,l2,r2,请你判断 [l1,r1] 和 [l2,r2] 这两个区间所包含的字符串子串是否完全相同。
字符串中只包含大小写英文字母和数字。
输入格式
第一行包含整数 n 和 m,表示字符串长度和询问次数。
第二行包含一个长度为 n 的字符串,字符串中只包含大小写英文字母和数字。
接下来 m 行,每行包含四个整数 l1,r1,l2,r2,表示一次询问所涉及的两个区间。
注意,字符串的位置从 1 开始编号。
输出格式
对于每个询问输出一个结果,如果两个字符串子串完全相同则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
8 3
aabbaabb
1 3 5 7
1 3 6 8
1 2 1 2
输出样例:
Yes
No
Yes
#include<bits/stdc++.h> using namespace std; typedef unsigned long long ULL; const int N=100010,P=131; string str; int n,m; ULL h[N],p[N]; ULL hashstr(int l,int r) { return h[r]-h[l-1]*p[r-l+1]; } int main() { cin>>n>>m; cin>>str; p[0]=1; for(int i=1;i<=n;i++) { h[i]=h[i-1]*P+str[i-1]; p[i]=p[i-1]*P; } while(m--) { int l,r,ll,rr; cin>>l>>r>>ll>>rr; if(hashstr(l,r)==hashstr(ll,rr)) cout<<"Yes"<<endl; else cout<<"No"<<endl; } return 0; }
2.12 STL
C++ STL简介
vector, 变长数组,倍增的思想 size() 返回元素个数 empty() 返回是否为空 clear() 清空 front()/back() push_back()/pop_back() begin()/end() [] 支持比较运算,按字典序 pair<int, int> first, 第一个元素 second, 第二个元素 支持比较运算,以first为第一关键字,以second为第二关键字(字典序) string,字符串 size()/length() 返回字符串长度 empty() clear() substr(起始下标,(子串长度)) 返回子串 c_str() 返回字符串所在字符数组的起始地址 queue, 队列 size() empty() push() 向队尾插入一个元素 front() 返回队头元素 back() 返回队尾元素 pop() 弹出队头元素 priority_queue, 优先队列,默认是大根堆 size() empty() push() 插入一个元素 top() 返回堆顶元素 pop() 弹出堆顶元素 定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q; stack, 栈 size() empty() push() 向栈顶插入一个元素 top() 返回栈顶元素 pop() 弹出栈顶元素 deque, 双端队列 size() empty() clear() front()/back() push_back()/pop_back() push_front()/pop_front() begin()/end() [] set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列 size() empty() clear() begin()/end() ++, -- 返回前驱和后继,时间复杂度 O(logn) set/multiset insert() 插入一个数 find() 查找一个数 count() 返回某一个数的个数 erase() (1) 输入是一个数x,删除所有x O(k + logn) (2) 输入一个迭代器,删除这个迭代器 lower_bound()/upper_bound() lower_bound(x) 返回大于等于x的最小的数的迭代器 upper_bound(x) 返回大于x的最小的数的迭代器 map/multimap insert() 插入的数是一个pair erase() 输入的参数是pair或者迭代器 find() [] 注意multimap不支持此操作。 时间复杂度是 O(logn) lower_bound()/upper_bound() unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表 和上面类似,增删改查的时间复杂度是 O(1) 不支持 lower_bound()/upper_bound(), 迭代器的++,-- bitset, 圧位 bitset<10000> s; ~, &, |, ^ >>, << ==, != [] count() 返回有多少个1 any() 判断是否至少有一个1 none() 判断是否全为0 set() 把所有位置成1 set(k, v) 将第k位变成v reset() 把所有位变成0 flip() 等价于~ flip(k) 把第k位取反