Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI)紫外线气溶胶指数 (UVAI) 数据集

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI)紫外线气溶胶指数 (UVAI) 数据集

OFFL/L3_AER_LH

This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Layer Height (ALH).


The ALH is very sensitive to cloud contamination. However, aerosols and clouds can be difficult to distinguish, and ALH is computed for all FRESCO effective cloud fractions smaller than 0.05. Cloud masks are available from FRESCO and VIIRS, and are strongly recommended to filter for residual clouds. A sunglint mask is also available to screen sunglint regions, which are not filtered beforehand.

It is known that high surface albedos negatively influence the ALH, biasing the ALH towards the surface. In general, the ALH over (dark) oceans is considered reliable to within the requirement of 1000 m or 100 hPa. Over land, especially bright surfaces, the accuracy may be lower, and the use of the ALH product over bright surfaces like deserts is not advisable.


For this L3 AER_LH product, the aerosol_mid_pressure is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths. The COPERNICUS/S5P/OFFL/L3_SO2 product has the absorbing_aerosol_index calculated using the 340 nm and 380 nm wavelengths.


该数据集提供了紫外线气溶胶指数 (UVAI) 的离线高分辨率图像,也称为吸收层高度 (ALH)。


ALH 对云污染非常敏感。然而,气溶胶和云很难区分,ALH 是针对所有小于 0.05 的 FRESCO 有效云分数计算的。 FRESCO 和 VIIRS 提供云遮罩,强烈建议过滤残留云。也可使用阳光遮罩来筛选未预先过滤的阳光区域。


众所周知,高表面反照率会对 ALH 产生负面影响,使 ALH 偏向表面。一般而言,(暗)海洋上的 ALH 在 1000 m 或 100 hPa 的要求内被认为是可靠的。在陆地上,尤其是在明亮的表面上,精度可能会较低,并且不建议在沙漠等明亮的表面上使用 ALH 产品。


对于此 L3 AER_LH 产品,使用 354 nm 和 388 nm 波长处的一对测量值计算 aerosol_mid_pressure。 COPERNICUS/S5P/OFFL/L3_SO2 产品具有使用 340 nm 和 380 nm 波长计算的吸收气溶胶指数。


OFFL L3 Product

To make our OFFL L3 products, we find areas within the product's bounding box with data using a command like this:

harpconvert --format hdf5 --hdf5-compression 9
-a 'aerosol_height_validity>50;derive(datetime_stop {time})'
S5P_OFFL_L2__AER_LH_20190404T042423_20190404T060554_07630_01_010300_20190410T062552.nc
grid_info.h5


We then merge all the data into one large mosaic (area-averaging values for pixels that may have different values for different times). From the mosaic, we create a set of tiles containing orthorectified raster data.


Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'aerosol_height_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(aerosol_height,aerosol_pressure,aerosol_optical_depth,
     sensor_zenith_angle,sensor_azimuth_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_OFFL_L2__AER_LH_20190404T042423_20190404T060554_07630_01_010300_20190410T062552.nc
output.h5


Sentinel-5 Precursor

Sentinel-5 Precursor is a satellite launched on 13 October 2017 by the European Space Agency to monitor air pollution. The onboard sensor is frequently referred to as Tropomi (TROPOspheric Monitoring Instrument).

All of the S5P datasets, except CH4, have two versions: Near Real-Time (NRTI) and Offline (OFFL). CH4 is available as OFFL only. The NRTI assets cover a smaller area than the OFFL assets, but appear more quickly after acquisition. The OFFL assets contain data from a single orbit (which, due to half the earth being dark, contains data only for a single hemisphere).

Because of noise on the data, negative vertical column values are often observed in particular over clean regions or for low SO2 emissions. It is recommended not to filter these values except for outliers, i.e. for vertical columns lower than -0.001 mol/m^2.

The original Sentinel 5P Level 2 (L2) data is binned by time, not by latitude/longitude. To make it possible to ingest the data into Earth Engine, each Sentinel 5P L2 product is converted to L3, keeping a single grid per orbit (that is, no aggregation across products is performed).

Source products spanning the antimeridian are ingested as two Earth Engine assets, with suffixes _1 and _2.

The conversion to L3 is done by the harpconvert tool using the bin_spatial operation. The source data is filtered to remove pixels with QA values less than:

  • 80% for AER_AI
  • 75% for the tropospheric_NO2_column_number_density band of NO2
  • 50% for all other datasets except for O3 and SO2

The O3_TCL product is ingested directly (without running harpconvert).

Dataset Availability

2018-07-04T13:34:21 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_LH")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
aerosol_height The aerosol layer pressure is converted into an aerosol layer altitude using an appropriate temperature profile, i.e. the temperature profile used in the retrieval. The value is given relative to the geoid. -78.91 69370.95 m
aerosol_pressure Pressure of an aerosol layer with an assumed pressure thickness of (currently) 50 hPa and a constant aerosol volume extinction coefficient and single scattering albedo. 2.06 103896.24 Pa
aerosol_optical_depth Aerosol optical thickness τ of the assumed aerosol layer. The optical thickness holds for 760 nm. -0.6 11.56 Pa
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.87 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 12.93 74.7 degrees

* = Values are estimated


影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH')
                    .select('aerosol_height')
                    .filterDate('2019-06-01', '2019-06-05');
var visualization = {
  min: 0,
  max: 6000,
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.setCenter(44.09, 24.27, 4);
Map.addLayer(collection.mean(), visualization, 'S5P Aerosol Height');


相关文章
|
16天前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
38 2
|
5天前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
|
2月前
|
存储 人工智能 数据可视化
AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集
在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。
|
2月前
|
人工智能 数据处理 计算机视觉
AI计算机视觉笔记十六:yolov5训练自己的数据集
本文介绍了一种利用云服务器AutoDL训练疲劳驾驶行为检测模型的方法。由于使用本地CPU训练效率低下,作者选择了性价比高的AutoDL云服务器。首先,从网络获取了2000多张疲劳驾驶行为图片并使用labelimg软件进行标注。接着,详细介绍了在云服务器上创建实例、上传数据集和YOLOv5模型、修改配置文件以及开始训练的具体步骤。整个训练过程耗时约3小时,最终生成了可用于检测的模型文件。
|
数据采集 存储 机器学习/深度学习
人类高质量AI训练方式:精细化数据集管理颠覆"唯SOTA论"
提起人工智能(AI),你可能会想起2006年杰弗里辛顿(Geoffrey Hinton)那篇奠定当代神经网络全新架构的论文“Learning of Multiple Layers of Representation”;也可能会想起为AI提供算力的亚马逊的AWS的云计算平台;又或者是斯坦福李飞飞教授的ImageNet项目。
357 0
人类高质量AI训练方式:精细化数据集管理颠覆"唯SOTA论"
|
机器学习/深度学习 人工智能 测试技术
中科院自动化所拿下星际争霸AI竞赛第四名,顺便发布了一个训练AI“大局观”的数据集
上周日,互动数字娱乐AI大会(AIIDE)2017中的星际争霸AI竞赛落下帷幕。这一竞赛是即时战略(RTS)游戏AI比赛中最重要的比赛之一,暴雪、DeepMind和Facebook人工智能研究院等机构也有赞助。
1322 0
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
37 1
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。

热门文章

最新文章

推荐镜像

更多
下一篇
无影云桌面