Google Earth Engine ——数据全解析专辑(Global ALOS mTPI (Multi-Scale Topographic Position )生态相关地貌学 (ERGo) 数据集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(Global ALOS mTPI (Multi-Scale Topographic Position )生态相关地貌学 (ERGo) 数据集

The mTPI distinguishes ridge from valley forms. It is calculated using elevation data for each location subtracted by the mean elevation within a neighborhood. mTPI uses moving windows of radius (km): 115.8, 89.9, 35.5, 13.1, 5.6, 2.8, and 1.2. It is based on the 30m "AVE" band of JAXA's ALOS DEM (available in EE as JAXA/ALOS/AW3D30_V1_1).


The Conservation Science Partners (CSP) Ecologically Relevant Geomorphology (ERGo) Datasets, Landforms and Physiography contain detailed, multi-scale data on landforms and physiographic (aka land facet) patterns. Although there are many potential uses of these data, the original purpose for these data was to develop an ecologically relevant classification and map of landforms and physiographic classes that are suitable for climate adaptation planning. Because there is large uncertainty associated with future climate conditions and even more uncertainty around ecological responses, providing information about what is unlikely to change offers a strong foundation for managers to build robust climate adaptation plans. The quantification of these features of the landscape is sensitive to the resolution, so we provide the highest resolution possible given the extent and characteristics of a given index.


mTPI 区分山脊和山谷形式。它是使用每个位置的高程数据减去邻域内的平均高程来计算的。 mTPI 使用半径 (km) 的移动窗口:115.8、89.9、35.5、13.1、5.6、2.8 和 1.2。它基于 JAXA 的 ALOS DEM(在 EE 中作为 JAXA/ALOS/AW3D30_V1_1 可用)的 30m“AVE”频段。


保护科学合作伙伴 (CSP) 生态相关地貌学 (ERGo) 数据集、地貌和地貌包含有关地貌和地貌(又名土地面)模式的详细的多尺度数据。尽管这些数据有许多潜在用途,但这些数据的最初目的是开发适合气候适应规划的地貌和地貌类别的生态相关分类和地图。由于未来气候条件存在很大的不确定性,生态响应的不确定性甚至更大,因此提供有关不太可能发生变化的信息为管理者制定稳健的气候适应计划提供了坚实的基础。景观的这些特征的量化对分辨率很敏感,因此在给定指数的范围和特征的情况下,我们提供可能的最高分辨率。

Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/Global/ALOS_mTPI")

Resolution

270 meters

Bands Table

Name Description Min* Max* Units
AVE ALOS-derived mTPI ranging from negative (valleys) to positive (ridges) values -3758 10963 Meters

* = Values are estimated


数据引用:

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., & Albano, C. M. (2015). Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PloS one, 10(12), e0143619

代码:

var dataset = ee.Image('CSP/ERGo/1_0/Global/ALOS_mTPI');
var alosMtpi = dataset.select('AVE');
var alosMtpiVis = {
  min: -200.0,
  max: 200.0,
  palette: ['0b1eff', '4be450', 'fffca4', 'ffa011', 'ff0000'],
};
Map.setCenter(-105.8636, 40.3439, 11);
Map.addLayer(alosMtpi, alosMtpiVis, 'ALOS mTPI');


相关文章
|
8天前
|
数据采集 前端开发 API
SurfGen爬虫:解析HTML与提取关键数据
SurfGen爬虫:解析HTML与提取关键数据
|
13天前
|
数据采集 监控 搜索推荐
深度解析淘宝商品详情API接口:解锁电商数据新维度,驱动业务增长
淘宝商品详情API接口,是淘宝开放平台为第三方开发者提供的一套用于获取淘宝、天猫等电商平台商品详细信息的应用程序接口。该接口涵盖了商品的基本信息(如标题、价格、图片)、属性参数、库存状况、销量评价、物流信息等,是电商企业实现商品管理、市场分析、营销策略制定等功能的得力助手。
|
23天前
|
搜索推荐 API 开发者
深度解析:利用商品详情 API 接口实现数据获取与应用
在电商蓬勃发展的今天,数据成为驱动业务增长的核心。商品详情API接口作为连接海量商品数据的桥梁,帮助运营者、商家和开发者获取精准的商品信息(如价格、描述、图片、评价等),优化策略、提升用户体验。通过理解API概念、工作原理及不同平台特点,掌握获取权限、构建请求、处理响应和错误的方法,可以将数据应用于商品展示、数据分析、竞品分析和个性化推荐等场景,助力电商创新与发展。未来,随着技术进步,API接口将与人工智能、大数据深度融合,带来更多变革。
62 3
|
9月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
761 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
9月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2911 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
9月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
294 0
|
9月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
141 0
|
9月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
126 0
|
9月前
|
数据采集 编解码 人工智能
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
294 0
|
9月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
94 0

推荐镜像

更多