题目描述
这是 LeetCode 上的37. 解数独,难度为 Hard。
编写一个程序,通过填充空格来解决数独问题。
一个数独的解法需遵循如下规则:
- 数字 1-9 在每一行只能出现一次。
- 数字 1-9 在每一列只能出现一次。
- 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
空白格用 '.' 表示。
一个数独。
网络异常,图片无法展示
|
答案被标成红色。
网络异常,图片无法展示
|
提示:
- 给定的数独序列只包含数字 1-9 和字符 '.' 。
- 你可以假设给定的数独只有唯一解。
- 给定数独永远是 9x9 形式的。
回溯解法
上一题「36. 有效的数独(中等)」是让我们判断给定的 borad
是否为有效数独。
这题让我们对给定 board
求数独,由于 board
固定是 9*9
的大小,我们可以使用回溯算法去做。
这一类题和 N 皇后一样,属于经典的回溯算法裸题。
这类题都有一个明显的特征,就是数据范围不会很大,如该题限制了范围为 9*9
,而 N 皇后的 N 一般不会超过 13。
对每一个需要填入数字的位置进行填入,如果发现填入某个数会导致数独解不下去,则进行回溯:
class Solution { boolean[][] row = new boolean[9][9]; boolean[][] col = new boolean[9][9]; boolean[][][] cell = new boolean[3][3][9]; public void solveSudoku(char[][] board) { for (int i = 0; i < 9; i++) { for (int j = 0; j < 9; j++) { if (board[i][j] != '.') { int t = board[i][j] - '1'; row[i][t] = col[j][t] = cell[i / 3][j / 3][t] = true; } } } dfs(board, 0, 0); } boolean dfs(char[][] board, int x, int y) { if (y == 9) return dfs(board, x + 1, 0); if (x == 9) return true; if (board[x][y] != '.') return dfs(board, x, y + 1); for (int i = 0; i < 9; i++) { if (!row[x][i] && !col[y][i] && !cell[x / 3][y / 3][i]) { board[x][y] = (char)(i + '1'); row[x][i] = col[y][i] = cell[x / 3][y / 3][i] = true; if (dfs(board, x, y + 1)) { break; } else { board[x][y] = '.'; row[x][i] = col[y][i] = cell[x / 3][y / 3][i] = false; } } } return board[x][y] != '.'; } } 复制代码
- 时间复杂度:在固定
9*9
的棋盘里,具有一个枚举方案的最大值(极端情况,假设我们的棋盘刚开始是空的,这时候每一个格子都要枚举,每个格子都有可能从 1 枚举到 9,所以枚举次数为 999 = 729),即复杂度不随数据变化而变化。复杂度为 O(1)O(1)O(1) - 空间复杂度:在固定
9*9
的棋盘里,复杂度不随数据变化而变化。复杂度为 O(1)O(1)O(1)
点评
为啥说数独问题是经典问题呢?为啥面试会经常出现数独问题?
是因为数独是明确根据「规则」进行求解的问题。与我们的工程很像的。
而且求解方法也十分统一,就是使用 DFS + 回溯进行爆搜。
「解数独」是众多需要重点掌握的热题之一。
最后
这是我们「刷穿 LeetCode」系列文章的第 No.37
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。