Redis和消息队列使用实战

简介:  消息队列是在乐视这边非常普遍使用的技术。在我们部门内部,不同的项目使用的消息队列实现也不一样。下面是支付系统的流转图

 消息队列是在乐视这边非常普遍使用的技术。在我们部门内部,不同的项目使用的消息队列实现也不一样。下面是支付系统的流转图(部门兄弟画的,借用一下):

1112728-20170818193604193-86620589.png


从图中可以看到,里面用到了kafka消息队列。作用是做数据库分库分表后的聚合,异步汇总到一张总表。里面也用到了redis,用来处理高并发下的订单重复提交。我们这边还使用了公司统一集群的apache qpid消息队列,是AMQP的一个实现,主要用于不同部门间的通信。一般的大公司都会有一些公司统一的集群,但是这种统一集群对开发者来说相对透明,所以部门间相互合作的时候用的多,自己部门内部用,避免采坑,大家宁愿自己搭一套。redis用处就更多了。阿里的阳哥自己做了一个异常日志监控平台,主要就是用redis做数据传输和存储。


  别人做的东西我就不多说了。下午说说redis在我自己的框架中使用实战。这是epiphany离线数据的流程图。大家可以将里面的DAO部分数据做替换,替换成自己的数据库随便什么数据即可运行。

1112728-20170821185908668-1838114550.png


 从图中可以看到处理过程基本都是在和redis打交道。Redis的基本数据结构是跳跃表。像这种跟存储打交道的,数据结构是必须要了解的。比如lucene搜索最初的版本也是用的跳跃表,后来改成基于图的有限自动机了。想了解具体了解跳跃表可以看我的另一篇文章《看Lucene源码必须知道的基本规则和算法》。像一些java写的框架,比如dubbo,spring IoC里,一提到注册,要注册到一个地方,在JVM的数据结构一般是hashmap。准确的说:spring IoC里是通过一个hashmap来持有载入的BeanDefinition对象实现注册的。


Redis持久化原理


  Redis提供了两种方式对数据进行持久化,分别是RDB(Redis DataBase)和AOF(APPEND ONLY FILE)。RDB持久化方式能够在指定的时间间隔对数据进行快照存储。AOF持久化方式记录每次服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF命令以redis协议追加保存每次写操作到文件末尾。Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大。不过,我问过很多部门,出于性能考虑,他们的持久化都是不开启的。如果同时开启两种持久化方式,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整。


  了解一下持久化的C语言实现。Redis需要执行RDB的时候,服务器会执行以下操作:redis调用系统函数fork(),创建一个子进程。子进程将数据集写入到一个临时RDB文件中。当子进程完成对临时RDB文件的写入时,redis用新的临时RDB文件替换原来的RDB文件,并删除旧RDB文件。在执行fork时linux操作系统(一般大公司的服务器都是这个系统)会使用写时复制(copy-on-write)策略,即fork函数发生的一刻父子进程共享同一内存数据,当父进程要更新其中某片数据时,操作系统会将该片数据复制一份以保证子进程的数据不收影响,所以新的RDB文件存储的是之执行fork那一刻的内存数据。RDB文件是经过压缩的二进制格式,所以占用的空间会小于内存的数据大小。但是压缩操作很占CPU,所以可以通过配置文件配置禁止压缩。


  了解一下对应的redis命令。除了自动快照,还可以手动发送save或者bgsave命令让redis直行快照。save命令是在主进程上进行的,会阻塞其他请求。后者会fork子进程进行快照操作。


  和mysql存储比较。RDB方式比较类似于mysql的mysqldump命令备份。而AOF更接近于binlog。


Redis内存优化


   redis配置文件中有个maxmemory参数设置,如果没有设置会继续分配内存,因此可以逐渐吃掉所有可用内存。因此,通常建议配置一些限制和策略。这样做的优点是:不会导致因为内存饥饿而整机死亡。缺点是:Redis可能会返回内存不足的错误写命令。redis有6种过期策略。


  1>volatile-lru:只对设置了过期时间的key进行LRU

  2>allkeys-lur:对所有的key进行LRU

  3>volatile-random:随机删除即将过期的key

  4>allkeys-random:从所有的key中随时删除

  5>volatile-ttl:删除即将过期的,ttl(tiime to live)剩余生存时间

  6>noeviction:永不过期,返回错误


  参数的设置可以采用命令方式,也可以采用配置文件方式(所有的配置都支持这两种),配置命令如


  config set maxmemory-policy volatile-lru


  还可以设置随机抽样数,如


  config set maxmemory-samples 5 就是说每次进行淘汰的时候,会随机抽取5个key从里面淘汰最不经常使用的。

  

  redis压缩列表(ziplist)。压缩列表是列表键和哈希键的底层实现之一。当一个列表键只包含少量表项,并且每个列表要么是小整数,要么是较短的字符串,那么redis就会使用压缩列表来作为列表键的底层实现。当一个哈席键只包含少量key-value对,且每个key和value要么是小整数,要么是较短字符串,那么redis就会使用ziplist作为哈希键的底层实现。


1112728-20170821205302496-746953835.png


 我在介绍自己的epiphany框架的时候(在上面流程图里也有体现),如果一个key里的结构是个hash,在小于1k的hash键的情况下我直接用hash,而大于1k,考虑到写入性能差,我就直接将hash打包压缩成一个大value来存储。考虑使用这两种策略的其中一个原因是小散列表使用的内存非常小,节省存储空间。




相关文章
|
3月前
|
存储 NoSQL 前端开发
Redis专题-实战篇一-基于Session和Redis实现登录业务
本项目基于SpringBoot实现黑马点评系统,涵盖Session与Redis两种登录方案。通过验证码登录、用户信息存储、拦截器校验等流程,解决集群环境下Session不共享问题,采用Redis替代Session实现数据共享与自动续期,提升系统可扩展性与安全性。
284 3
Redis专题-实战篇一-基于Session和Redis实现登录业务
|
3月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
223 1
Redis专题-实战篇二-商户查询缓存
|
9月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
996 0
分布式爬虫框架Scrapy-Redis实战指南
|
6月前
|
缓存 监控 NoSQL
Redis 实操要点:Java 最新技术栈的实战解析
本文介绍了基于Spring Boot 3、Redis 7和Lettuce客户端的Redis高级应用实践。内容包括:1)现代Java项目集成Redis的配置方法;2)使用Redisson实现分布式可重入锁与公平锁;3)缓存模式解决方案,包括布隆过滤器防穿透和随机过期时间防雪崩;4)Redis数据结构的高级应用,如HyperLogLog统计UV和GeoHash处理地理位置。文章提供了详细的代码示例,涵盖Redis在分布式系统中的核心应用场景,特别适合需要处理高并发、分布式锁等问题的开发场景。
461 41
|
6月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1894 7
|
6月前
|
机器学习/深度学习 存储 NoSQL
基于 Flink + Redis 的实时特征工程实战:电商场景动态分桶计数实现
本文介绍了基于 Flink 与 Redis 构建的电商场景下实时特征工程解决方案,重点实现动态分桶计数等复杂特征计算。通过流处理引擎 Flink 实时加工用户行为数据,结合 Redis 高性能存储,满足推荐系统毫秒级特征更新需求。技术架构涵盖状态管理、窗口计算、Redis 数据模型设计及特征服务集成,有效提升模型预测效果与系统吞吐能力。
707 2
|
9月前
|
缓存 NoSQL Java
基于SpringBoot的Redis开发实战教程
Redis在Spring Boot中的应用非常广泛,其高性能和灵活性使其成为构建高效分布式系统的理想选择。通过深入理解本文的内容,您可以更好地利用Redis的特性,为应用程序提供高效的缓存和消息处理能力。
869 79
|
NoSQL 安全 测试技术
Redis游戏积分排行榜项目中通义灵码的应用实战
Redis游戏积分排行榜项目中通义灵码的应用实战
295 4
|
消息中间件 运维 UED
消息队列运维实战:攻克消息丢失、重复与积压难题
消息队列(MQ)作为分布式系统中的核心组件,承担着解耦、异步处理和流量削峰等功能。然而,在实际应用中,消息丢失、重复和积压等问题时有发生,严重影响系统的稳定性和数据的一致性。本文将深入探讨这些问题的成因及其解决方案,帮助您在运维过程中有效应对这些挑战。
332 1
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
688 5