Hadoop集群nodes unhealthy解决方法

简介: Hadoop集群nodes unhealthy解决方法

在搭建好Hadoop集群之后,所有服务均可正常启动,但是在运行MapReduce程序的时候,发现任务卡在7/09/07 22:28:14 INFO mapreduce.Job: Running job:


job_1504781778966_0003,不再往下执行了,经过检查,发现所有的nodes节点都处于unhealthy的状态,使用命令查看node 的状态


bin/yarn node -list -all

查看日志发现


2015-07-16 15:28:58,643 WARN org.apache.hadoop.yarn.server.nodemanager.DirectoryCollection: Directory /opt/beh/data/yarn/nmlocal error, used space above threshold of 90.0%, removing from list of valid directories
2015-07-16 15:28:58,645 WARN org.apache.hadoop.yarn.server.nodemanager.DirectoryCollection: Directory /opt/beh/logs/yarn/nmlogs error, used space above threshold of 90.0%, removing from list of valid directories


2015-07-16 15:28:58,645 INFO org.apache.hadoop.yarn.server.nodemanager.LocalDirsHandlerService: Disk(s) failed: 1/1 local-dirs are bad: /opt/beh/data/yarn/nmlocal; 1/1 log-dirs are bad: /opt/beh/logs/yarn/nmlogs
2015-07-16 15:28:58,645 ERROR org.apache.hadoop.yarn.server.nodemanager.LocalDirsHandlerService: Most of the disks failed. 1/1 local-dirs are bad: /opt/beh/data/yarn/nmlocal; 1/1 log-dirs are bad: /opt/beh/logs/yarn/nmlogs


是node的内存不足导致的!


解决方法


* 1 把节点上的不用的东西删完,删到90%以下即可

* 2 在yarn-site.xml中添加以下配置信息,修改上限和下限


<property>
     <name>yarn.nodemanager.disk-health-checker.min-healthy-disks</name>
     <value>0.0</value>
  </property>
  <property>
     <name>yarn.nodemanager.disk-health-checker.max-disk-utilization-per-disk-percentage</name>
     <value>100.0</value>
 </property>


再重启服务 问题解决。


相关文章
|
6月前
|
分布式计算 Hadoop Java
CentOS中构建高可用Hadoop 3集群
这个过程像是在一个未知的森林中探索。但当你抵达终点,看到那个熟悉的Hadoop管理界面时,所有的艰辛都会化为乌有。仔细观察,尽全力,这就是构建高可用Hadoop 3集群的挑战之旅。
253 21
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
487 6
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
312 4
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
171 3
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
202 3
|
分布式计算 Java Hadoop
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
237 1
|
分布式计算 监控 Hadoop
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
231 1
|
8月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
393 79
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
283 2
|
11月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
538 4

相关实验场景

更多