直方图的绘制 基于python-matplotlib库

简介: 直方图的绘制 基于python-matplotlib库

文章目录

1.关于直方图

2 plt.hist()

3. 绘制一幅简单的 频数 分布直方图

4. 绘制一幅 频率 分布直方图

5. 累积分布直方图(水平方向)

1.关于直方图

直方图 也称 质量分布图,虽然看起来像柱状图,

实际上区别又很大。直方图通常横轴表示数据类型,纵轴表示各数据类型的分布情况。


直方图又可以分为频数分布直方图和频率分布直方图。其绘制方法并无多少差异,只是描述的事件有所不同。频数分布直方图描述的是某事件的数量,而频率分布则描述的是其发生的频率。


而关于频率分布直方图,又可以理解为是“密度图”的一种。频率分布直方图 和 密度图 都可以用来描述事件的概率分布,其中频率分布直方图描述的是离散型随机变量的概率分布,而密度图则描述的是连续型随机变量的概率分布。


2 plt.hist()

绘制直方图通过plt.hist()方法实现,其常用的参数有:


x 数据集

bins ------------- 统计数据的区间分布。可以是一个元素为数值的列表,也可以是一个数值。是一个数值的时候可以配合range参数使用。

range ----------- 元组类型,显示的区间。

当设置区间分布使用数值型的bins和range参数设定时:range确定一个范围,传入形式是一个元组(注意不是range范围对象),左右端点值都可取。数值型的bins表示将该范围分成的份数(等分)。

density --------- 布尔型,显示频率统计结果。默认为None(相当于False),设为False不显示频率统计结果;设为True则显示频率统计结果,即绘制出的图像由频数分布直方图变为频率分布直方图。

histtype -------- 可选参数,即直方图的类型。默认为bar,即绘制出的“柱状”条形。还可以设置为barstacked、step、stepfilled。

align -------------可选参数,控制柱状图的水平分布,设置值为left、mid 或 right,默认值为mid,也推荐使用mid。left和right会产生部分的空白区域。

log --------------- 布尔类型,默认为False,即y轴是否选择指数刻度。

stacked --------- 布尔类型,默认为False,表示是否为堆积柱状图。

edgecolor------- 设定边沿颜色

facecolor-------- 可以用来设定直方图的颜色,也可以简写为color。

orientation-------直方图的方向,默认为竖直方向上的(‘vertical’),设为’horizontal’则表示水平方向上的。

cumulative------默认为False,表示不累积。如果为True则设置累积分度直方图。


3. 绘制一幅简单的 频数 分布直方图

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] ='#cc00ff'
# 设定随机数种子为30
np.random.seed(30)
data = np.random.randint(0, 100, 100)
plt.hist(data, bins=[0, 25, 50, 75, 100], facecolor='#ffff00', edgecolor='#FF0000')
plt.xlabel('X指标')
plt.ylabel('样本个数')
plt.title('X指标频数分布直方图')
plt.show()

1.png

4. 绘制一幅 频率 分布直方图

将density设置为True即可·。


此外我们再修改一些细节,将histtype参数设置为stepfilled(梯状且填充)。

并把y轴的标签由“样本个数”改为“样本频率”。

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] ='#cc00ff'
np.random.seed(30)
data = np.random.randint(0, 100, 100)
plt.hist(data, bins=[0, 25, 50, 75, 100], facecolor='#ffff00', edgecolor='#FF0000', density=True, histtype='stepfilled')
plt.xlabel('X指标')
plt.ylabel('样本频率')
plt.title('X指标频数分布直方图')
plt.show()

图像效果如下:

1.png

5. 累积分布直方图(水平方向)

增加参数cumulative=True, orientation=‘horizontal’。

此外,因为图像变成了水平方向,所以也需要把x、y轴标签互换并稍作调整。

这里设置区间分布使用数值型的bins和range参数设定,范围为0-100,区间分割为10等份。

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] ='#cc00ff'
np.random.seed(30)
data = np.random.randint(0, 100, 100)
plt.hist(data, bins=10, range=(0, 100), facecolor='#ffff00', edgecolor='#FF0000', density=True, cumulative=True, orientation='horizontal')
plt.xlabel('样本累积频率')
plt.ylabel('X指标')
plt.title('X指标频数分布直方图')
plt.show()

图像效果如下:

1.png

目录
相关文章
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
74 20
|
5天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
34 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
29天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
112 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
3月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
187 77
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
204 4
数据分析的 10 个最佳 Python 库
|
3月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
230 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
71 11
|
3月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
3月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
181 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库

热门文章

最新文章