定义
- 在任何问题中,数据元素都不是孤立存在的,而是在它们之间存在着某种关系,这种数据元素相互之间的关系称为结构(Structure)。数据结构是相互之间存在一种或多种特定关系的数据元素的集合。数据结构包括三方面的内容:逻辑结构、存储结构和数据的运算。数据的逻辑结构和存储结构是密不可分的两个方面,一个算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采用的存储结构。
逻辑结构
- 逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据。它与数据的存储无关,是独立于计算机的
数据的逻辑结构分为线性结构和非线性结构
- 集合 结构中的数据元素之间除了“同属于一个集合”的关系外,别无其他关系。 类似于数学上的集合
- 线性结构 结构中的数据元素之间只存在一对一的关系。比如排队
- 树形结构 结构中的数据元素之间存在一对多的关系。比如家族族谱
- 图状结构或网状结构 结构中的数据元素之间存在多对多的关系。 比如地图
物理结构
存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构。它包括数据元素的表示和关系的表示。数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。数据的存储结构主要有:顺序存储、链式存储、索引存储和散列存储。
- 顺序存储:存储的物理位置相邻。(p.s. 物理位置即信息在计算机中的位置。)
- 链接存储:存储的物理位置未必相邻,通过记录相邻元素的物理位置来找到相邻元素。
- 索引存储:类似于目录,以后可以联系操作系统的文件系统章节来理解。
- 散列存储:通过关键字直接计算出元素的物理地址(以后详解)。
算法的五个特征
- 1,有穷性:有限步之后结束
- 2,确定性:不存在二义性,即没有歧义
- 3,可行性:比如受限于计算机的计算能力,有些算法虽然理论上可行,但实际上无法完成。
- 4,输入:能被计算机处理的各种类型数据,如数字,音频,图像等等。
- 5,输出:一至多个程序输出结果。
算法的复杂度
时间复杂度:
- • 它用来衡量算法随着问题规模增大,算法执行时间增长的快慢;
- • 是问题规模的函数:T(n)是时间规模函数 时间复杂度主要分析T(n)的数量级
- • T(n)=O(f(n)) f(n)是算法中基本运算的频度 一般我们考虑最坏情况下的时间复杂度
空间复杂度:
- • 它用来衡量算法随着问题规模增大,算法所需空间的快慢;
- • 是问题规模的函数:S(n)=O(g(n)) ;算法所需空间的增长率和g(n)的增长率相同。
概要: 复杂度计算为重点
- 常用的时间复杂度大小关系:
复杂度如何计算
时间复杂度计算(单个循环体)
- 直接关注循环体的执行次数,设为k
时间复杂度计算(多个循环体)
- 两个运算规则:乘法规则,加法规则。