算法模版:暴力搜索之BFS

简介: 算法模版:暴力搜索之BFS

前言


唤我沈七就好。


往期专栏:

暴力搜索之DFS

因为BFS需要靠队列来实现,所以在阅读下面的文章时,需要用先了解一下什么是队列。

可以看我之前对队列的讲解。

模拟数据结构之队列


基本概念


BFS:是 Breadth-First-Search 简称,即广度优先搜索算法。

DFS 一样也是一种用于遍历或搜索树或图的算法。不同的是,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。而 DFS 是沿着树的深度遍历树的节点。


BFS 也被称为层序遍历,即一层一层的遍历,这样效率就高的多,所以相对于 DFS 指数级枚举,BFS 明显是更快的。

因为要同时遍历每一层的结点,所以我们要借助队列保存未被检测的结点。结点按照宽度优先的次序被访问和进出队列。而从队列中取出的顺序即为层序遍历的顺序。


算法思想


BFS 遍历有一个很重要的特点就是,第一个到达目标节点一定是最短路径。

如下图,因为BFS是一层一层的遍历且每一层距离根节点的距离都相同,遍历顺序由内而外,故BFS每到达一个目标节点一定是最短路径。

所以根据这一个特性 BFS 可以解决最短问题。


12.gif


必备概念


1. STL queue


我一般写BFS喜欢用 STL 的现成实现好的队列 queue。

当然你也可以用数组模拟实现队列。如果想了解如果用数组模拟队列,可以看我这篇文章。

模拟数据结构之队列

接下来我简单的介绍一下 STL queue 的使用方法。


queue<pair<int,int>> q;
q.front()  返回队头元素
q.push()   将元素入队
q.pop()    弹出队头元素


这里我定义的队列类型是 pair ,这是一个二元组,其实简单说这就是一个只有两个变量的结构体。

只不过直接用 pair 来定义方便一些。

定义成二元组,是为了方便表示坐标 ( x , y )。

初次以外还有一些常用的小优化


#define x first
#define y second 
typedef pair<int,int>PII;
queue<PII> q;


这样做的目的完全是为了简化代码。

typedef可以重新定义 数据结构 的名称,改成 PII 的单纯是为了简化代码。

fist和second是pair二元组第一和第二个元素,分别通过宏定义用 x 和 y 代替 也是为了简化代码


2 . 偏移量数组


int pos[4][2]={-1,0,0,1,1,0,0,-1};  扩展方法:偏移量数组


这是一个扩展某一个坐标周围的点的绝佳利器。

详细介绍我在我第一篇博客里有详细介绍,有兴趣的同学可以看看。

C/C++实现蛇形矩阵(超详解)


常用模板


伪代码模板


void BFS ()
{
  ① 初始化队列
  ② 将起点入队
  ③ 标记起点已经被访问
  ④ while( 队列不空时 )
  {
   ⑤ 取出队首元素 u ,存放到 t 变量里 ,u 元素出队
   ⑥ 扩展 t 结点
   {
    ⑦ 判重新节点
    ⑧ 如果未被访问,且满足要求,记录当前点到起点的距离
    ⑨ 标记扩展的新结点
    ⑩ 将扩展的新节点入队
   }
   }
}


C++ 模板


#define x first
#define y second 
typedef pair<int,int>PII;
queue<PII> q; STL 的队列,适用的是一个二元组,方便表示坐标。
q.push(start) ;          初始状态入队 
while(!q.empty())      当队列不空的时候。
PII t=q.front();
q.pop();                 取出队头元素,放到 t 里面去
 int pos[4][2]={-1,0,0,1,1,0,0,-1}; 扩展方法:偏移量数组
for(int i=0;i<4;i++)    扩展t结点
{
  int tx=t.x+pos[i][0];
  int ty=t.y+pos[i][1];
    if(g[tx][ty]=='#')continue;  判重新节点
    if(g[tx][ty]=='.') 
    {
        dis[tx][ty]=dis[t.x][t.y]+1;  记录当前点到起点的距离;
        g[tx][ty]='#';   标记好已经走过路
        q.push({tx,ty}); 确定是新节点后入队
    }                    
}


或许读者到现在也是懵懵懂懂,笔者能力有限,没办法把为什么这样做讲解的通俗易懂,如果实在想搞明白原理的话,可以去 AcWing 算法基础课中一探究竟。

而在我看来,只要牢记模板,做出题来也不是问题。

下面我就讲解一下能用BFS解决的经典的走迷宫的问题


经典例题:走迷宫


给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。

有一个人位于左上角 ( 1 , 1 )处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。请问,该人从左上角移动至右下角 ( n , m ) 处,至少需要移动多少次。


分析:提炼题目大意,此题就是求解从迷宫的左上角到迷宫的右下角,在不碰到障碍的最短路径是多少。因为是最短路径问题, 故用 BFS 解决相对容易。


详细的解释都在代码里~


#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second 
int n,m;
typedef pair<int,int>PII;
int a[110][110];   储存地图
int dis[110][110];  储存距离
int pos[4][2]={-1,0,0,1,1,0,0,-1}; 偏移量数组
void bfs(PII start)
{
    queue<PII>q;  
    q.push(start);  初始状态入队
    while(!q.empty())  队列不空时
    {
        PII t=q.front();        取出队首元素,存放到 t 变量里 ,元素出队
        q.pop();      元素出队
        for (int i = 0; i < 4; i ++ ) 扩展 t 结点
    {
       int tx=t.x+pos[i][0],ty=t.y+pos[i][1];
       if(a[tx][ty]==-1||a[tx][ty]==1)continue; 判断是否越界或者碰到障碍
       if(a[tx][ty]==0)  如果未被访问,
       {
           dis[tx][ty]=dis[t.x][t.y]+1; 记录当前点到起点的距离
           a[tx][ty]=-1;       标记扩展的新结点被访问
           q.push({tx,ty});    将扩展的新节点入队
       }
       if(tx==n&&ty==m) 如果到达右下角
       {
       cout<<dis[tx][ty]; 返回右下角到起点的距离
       return;
       }
    }
    }
}
int main()
{
    cin>>n>>m;
    memset(a, -1, sizeof a); 初始化为 -1 ,这样方便 判断边界
    for (int i = 1; i <= n; i ++ ) 从1开始读入地图方便判断边界,这样地图都会被初始化的 -1 包围
    for (int j = 1; j <= m; j ++ ) 这样判断扩展的点是否越界时,只要判断是不是 -1 即可
    {
        cin>>a[i][j];
    }
    PII start; 定义一个二元组,储存起点,传入到BFS函数里
    start.x=1,start.y=1;
    bfs(start);
    return 0;
}

完结散花


ok以上就是对 暴力搜索之BFS 的全部讲解啦,很感谢你能看到这儿啦。如果有遗漏、错误或者有更加通俗易懂的讲解,欢迎小伙伴私信我,我后期再补充完善。


题目练习


检验知识是否学会当然是不断刷题啦,下面我给出一部分DFS相关的一些经典题目。

后续如果我有时间就更新这部分知识的题解,到时候就可以配套学习啦。


献给阿尔吉侬的花束

八数码


参考文章


参考文献

https://www.acwing.com/activity/content/19/


相关文章
|
1月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
103 0
|
5天前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
52 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
2月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
535 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
6月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
174 24
|
1月前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
6月前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
699 3
|
2月前
|
机器学习/深度学习 并行计算 算法
MATLAB实现利用禁忌搜索算法解决基站选址问题
MATLAB实现利用禁忌搜索算法解决基站选址问题
91 0
|
3月前
|
存储 搜索推荐 算法
加密算法、排序算法、字符串处理及搜索算法详解
本文涵盖四大类核心技术知识。加密算法部分介绍了对称加密(如 AES)、非对称加密(如 RSA)、哈希摘要(如 SHA-2)、签名算法的特点及密码存储方案(加盐、BCrypt 等)。 排序算法部分分类讲解了比较排序(冒泡、选择、插入、归并、快排、堆排序)和非比较排序(计数、桶、基数排序)的时间复杂度、适用场景及实现思路,强调混合排序的工业应用。 字符串处理部分包括字符串反转的双指针法,及项目中用正则进行表单校验、网页爬取、日志处理的实例。 搜索算法部分详解了二分查找的实现(双指针与中间索引计算)和回溯算法的概念(递归 + 剪枝),以 N 皇后问题为例说明回溯应用。内容全面覆盖算法原理与实践
155 0
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
159 0

热门文章

最新文章