基数排序
经典空间换时间的思想流排序算法
基数排序(桶排序)介绍
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或 bin sort,顾 名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
基数排序(Radix Sort)是桶排序的扩展
基数排序是 1887 年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个
位数分别比较。
基数排序基本思想
将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。 这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序
创建一个二维数组,arr[10][n] 10是作为的桶,n是每个桶要装的数,按照个位数取出放到桶里,之后再按照十位数,分桶,一般来说排序的次数和最大数的位数一致,但是空间占用会越来越大,金典的空间换时间的算法
第二轮
最后
动图演示
代码思路实验
要求:将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序
package com.hyc.DataStructure.sort; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Date; public class RadixSort { public static void main(String[] args) { int arr[] = {53, 3, 542, 748, 14, 214}; // 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G // int[] arr = new int[8000000]; // for (int i = 0; i < 8000000; i++) { // arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数 // } System.out.println("排序前"); Date data1 = new Date(); SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String date1Str = simpleDateFormat.format(data1); System.out.println("排序前的时间是=" + date1Str); radixSort(arr); Date data2 = new Date(); String date2Str = simpleDateFormat.format(data2); System.out.println("排序前的时间是=" + date2Str); System.out.println("基数排序后 " + Arrays.toString(arr)); } //基数排序方法 public static void radixSort(int[] arr) { //根据前面的推导过程,我们可以得到最终的基数排序代码 //1. 得到数组中最大的数的位数 int max = arr[0]; //假设第一数就是最大数 for (int i = 1; i < arr.length; i++) { if (arr[i] > max) { max = arr[i]; } } //得到最大数是几位数 int maxLength = (max + "").length(); //定义一个二维数组,表示10个桶, 每个桶就是一个一维数组 //说明 //1. 二维数组包含10个一维数组 //2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length //3. 名明确,基数排序是使用空间换时间的经典算法 int[][] bucket = new int[10][arr.length]; //为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数 //可以这里理解 //比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数 int[] bucketElementCounts = new int[10]; //这里我们使用循环将代码处理 for (int i = 0, n = 1; i < maxLength; i++, n *= 10) { //(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位.. for (int j = 0; j < arr.length; j++) { //取出每个元素的对应位的值 int digitOfElement = arr[j] / n % 10; //放入到对应的桶中 bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j]; bucketElementCounts[digitOfElement]++; } //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) int index = 0; //遍历每一桶,并将桶中是数据,放入到原数组 for (int k = 0; k < bucketElementCounts.length; k++) { //如果桶中,有数据,我们才放入到原数组 if (bucketElementCounts[k] != 0) { //循环该桶即第k个桶(即第k个一维数组), 放入 for (int l = 0; l < bucketElementCounts[k]; l++) { //取出元素放入到arr arr[index++] = bucket[k][l]; } } //第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!! bucketElementCounts[k] = 0; } //System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr)); } /* //第1轮(针对每个元素的个位进行排序处理) for(int j = 0; j < arr.length; j++) { //取出每个元素的个位的值 int digitOfElement = arr[j] / 1 % 10; //放入到对应的桶中 bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j]; bucketElementCounts[digitOfElement]++; } //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) int index = 0; //遍历每一桶,并将桶中是数据,放入到原数组 for(int k = 0; k < bucketElementCounts.length; k++) { //如果桶中,有数据,我们才放入到原数组 if(bucketElementCounts[k] != 0) { //循环该桶即第k个桶(即第k个一维数组), 放入 for(int l = 0; l < bucketElementCounts[k]; l++) { //取出元素放入到arr arr[index++] = bucket[k][l]; } } //第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!! bucketElementCounts[k] = 0; } System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr)); //========================================== //第2轮(针对每个元素的十位进行排序处理) for (int j = 0; j < arr.length; j++) { // 取出每个元素的十位的值 int digitOfElement = arr[j] / 10 % 10; //748 / 10 => 74 % 10 => 4 // 放入到对应的桶中 bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j]; bucketElementCounts[digitOfElement]++; } // 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) index = 0; // 遍历每一桶,并将桶中是数据,放入到原数组 for (int k = 0; k < bucketElementCounts.length; k++) { // 如果桶中,有数据,我们才放入到原数组 if (bucketElementCounts[k] != 0) { // 循环该桶即第k个桶(即第k个一维数组), 放入 for (int l = 0; l < bucketElementCounts[k]; l++) { // 取出元素放入到arr arr[index++] = bucket[k][l]; } } //第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!! bucketElementCounts[k] = 0; } System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr)); //第3轮(针对每个元素的百位进行排序处理) for (int j = 0; j < arr.length; j++) { // 取出每个元素的百位的值 int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7 // 放入到对应的桶中 bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j]; bucketElementCounts[digitOfElement]++; } // 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) index = 0; // 遍历每一桶,并将桶中是数据,放入到原数组 for (int k = 0; k < bucketElementCounts.length; k++) { // 如果桶中,有数据,我们才放入到原数组 if (bucketElementCounts[k] != 0) { // 循环该桶即第k个桶(即第k个一维数组), 放入 for (int l = 0; l < bucketElementCounts[k]; l++) { // 取出元素放入到arr arr[index++] = bucket[k][l]; } } //第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!! bucketElementCounts[k] = 0; } System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */ } }
速度测试
八百万长度,内容为 0-8000000的随机数只需要一秒钟
我们简单计算一下用来多少内容
8000000 * 11 * 4 / 1024 / 1024 / 1024 =1G
从公式可以看出我们排序八百万 使用到了1g的内存,从各方面都可以看出,基数排序是经典的空间换时间的算法
基数排序的说明:
基数排序是对传统桶排序的扩展,速度很快.
基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些 记录的相对次序保持不变,即在原序列中,r[i]=r[j],且 r[i]在 r[j]之前,而在排序后的序列中,r[i]仍在 r[j]之前, 则称这种排序算法是稳定的;否则称为不稳定的]
有负数的数组,我们不用基数排序来进行排序, 如果要支持负数,参考: https://code.i-harness.com/zh-CN/q/e98fa9