归并排序
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer) 策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修 补"在一起,即分而治之)。
基本思想:
拆分子序列
将数组递归拆分成最小子序列,之后分组排序
合并相邻有序子序列
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将
[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8]
动态图
思路实现
给你一个数组, val arr = Array(8, 4, 5, 7, 1, 3, 6, 2 ), 请使用归并排序完成排序。
package com.hyc.DataStructure.sort; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Date; public class MergetSort { public static void main(String[] args) { int arr[] = {8, 4, 5, 7, 1, 3, 6, 2}; // //测试快排的执行速度 // 创建要给80000个的随机的数组 //int[] arr = new int[8000000]; //for (int i = 0; i < 8000000; i++) { // arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数 //} System.out.println("排序前"); Date data1 = new Date(); SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String date1Str = simpleDateFormat.format(data1); System.out.println("排序前的时间是=" + date1Str); int temp[] = new int[arr.length]; //归并排序需要一个额外空间 mergeSort(arr, 0, arr.length - 1, temp); Arrays.toString(arr); Date data2 = new Date(); String date2Str = simpleDateFormat.format(data2); System.out.println("排序前的时间是=" + date2Str); //System.out.println("归并排序后=" + Arrays.toString(arr)); } //分+合方法 public static void mergeSort(int[] arr, int left, int right, int[] temp) { if (left < right) { int mid = (left + right) / 2; //中间索引 //向左递归进行分解 mergeSort(arr, left, mid, temp); //向右递归进行分解 mergeSort(arr, mid + 1, right, temp); //合并 merge(arr, left, mid, right, temp); } } //合并的方法 /** * * @param arr 排序的原始数组 * @param left 左边有序序列的初始索引 * @param mid 中间索引 * @param right 右边索引 * @param temp 做中转的数组 */ public static void merge(int[] arr, int left, int mid, int right, int[] temp) { int i = left; // 初始化i, 左边有序序列的初始索引 int j = mid + 1; //初始化j, 右边有序序列的初始索引 int t = 0; // 指向temp数组的当前索引 //(一) //先把左右两边(有序)的数据按照规则填充到temp数组 //直到左右两边的有序序列,有一边处理完毕为止 while (i <= mid && j <= right) {//继续 //如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素 //即将左边的当前元素,填充到 temp数组 //然后 t++, i++ if (arr[i] <= arr[j]) { temp[t] = arr[i]; t += 1; i += 1; } else { //反之,将右边有序序列的当前元素,填充到temp数组 temp[t] = arr[j]; t += 1; j += 1; } } //(二) //把有剩余数据的一边的数据依次全部填充到temp while (i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp temp[t] = arr[i]; t += 1; i += 1; } while (j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp temp[t] = arr[j]; t += 1; j += 1; } //(三) //将temp数组的元素拷贝到arr //注意,并不是每次都拷贝所有 t = 0; int tempLeft = left; // //第一次合并 tempLeft = 0 , right = 1 // tempLeft = 2 right = 3 // tL=0 ri=3 //最后一次 tempLeft = 0 right = 7 while (tempLeft <= right) { arr[tempLeft] = temp[t]; t += 1; tempLeft += 1; } } }
速度测试
长度为 8000000,每个内容为0-800000的随机数,
可以很稳定,两秒左右,同样是排序,思想不同带来的优化肉眼可见的,以上就是归并排序的内容啦