Python中迭代器和生成器的区别?

简介: 公众号新增加了一个栏目,就是每天给大家解答一道Python常见的面试题,反正每天不贪多,一天一题,正好合适,只希望这个面试栏目,给那些正在准备面试的同学,提供一点点帮助!小猿会从最基础的面试题开始,每天一题。如果参考答案不够好,或者有错误的话,麻烦大家可以在留言区给出自己的意见和讨论,大家是要一起学习的 。


公众号新增加了一个栏目,就是每天给大家解答一道Python常见的面试题,反正每天不贪多,一天一题,正好合适,只希望这个面试栏目,给那些正在准备面试的同学,提供一点点帮助!


小猿会从最基础的面试题开始,每天一题。如果参考答案不够好,或者有错误的话,麻烦大家可以在留言区给出自己的意见和讨论,大家是要一起学习的 。


废话不多说,开始今天的题目:


问:说说Python中迭代器和生成器的区别?

答:Python中生成器能做到迭代器能做的所有事,而且因为自动创建了__iter__()和next()方法,生成器显得特别简洁,而且生成器也是高效的,使用生成器表达式取代列表解析,同时节省内存。除了创建和保持程序状态的自动生成,当发生器终结时,还会自动跑出StopIterration异常。


列表、元组、字典、字符串都是可迭代对象。

数字、布尔值都是不可迭代的。


下面分别来说说这两者的具体区别:


1、迭代器


迭代器对象要求支持迭代器协议的对象。在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法。其中__iter__()方法返回迭代器对象本身;next()方法返回容器的下一个元素,在结尾时引发StopIteration异常。


下面用个简单的列表来说迭代器的用法:

list = [1,2,3,4] # list是可迭代对象
lterator = iter(list) # 通过iter()方法取得list的迭代器
print(next(lterator)) # 1 通过next()获取下一个位置的值
print(next(lterator)) # 2
print(next(lterator)) # 3
print(next(lterator)) # 4
输出:
1
2
3
4


看完上面代码,我想很多人纳闷列表怎么可以有一个迭代器。由于面试题篇幅有限,大家如果想了解可迭代对象怎么可以获取迭代器呢?我下次面试题会继续展开分享 。


2、生成器

生成器(generator)就是一个函数,它提供了一种实现迭代器协议的便捷方式。生成器与普通函数的区别在于它包含 yield 表达式,并且不需要定义 __iter__()和__next__()。


生成器是一种惰性的序列,如果我们需要创建一个 0~1000000000 的序列,这样大的序列创建出来会占用比较多的内存,生成器就是为了解决这样的问题 。


下面用个简单的例子来说生成器的用法:

# 普通序列
>>> g = []
>>> for x in range(5):
>>>  g.append(x)
>>> g
[0, 1, 2, 3, 4]
# 生成器
def f():
 for x in range(5):
  yield x # 返回并记录函数状态
# next
f = f()
>>> next(f) # 每调用一次next,就执行一次yield | 依靠这种需要才生产的工作机制,大大的节省资源
0
>>> next(f)
1
>>> next(f)
2
>>> next(f)
3
>>> next(f)
4
# for next
>>> for x in range(5):
>>>  print(next(f))
0
1
2
3
4

如果对于参考答案有不认同的,大家可以在评论区指出和补充,欢迎留言!

相关文章
|
2月前
|
存储 开发者 Python
Python 中的数据结构与其他编程语言数据结构的区别
不同编程语言都有其设计理念和应用场景,开发者需要根据具体需求和语言特点来选择合适的数据结构
100 55
|
2月前
|
大数据 数据处理 开发者
Python中的迭代器和生成器:不仅仅是语法糖####
本文探讨了Python中迭代器和生成器的深层价值,它们不仅简化代码、提升性能,还促进了函数式编程风格。通过具体示例,揭示了这些工具在处理大数据、惰性求值及资源管理等方面的优势。 ####
|
3月前
|
存储 索引 Python
|
2月前
|
JavaScript 前端开发 算法
python中的列表生成式和生成器
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生的天地。通过自学前端技术2年半,现正向全栈开发迈进。如果你从我的文章中受益,欢迎关注,我将持续更新高质量内容,你的支持是我前进的动力!🎉🎉🎉
35 0
|
3月前
|
Python
Python生成器、装饰器、异常
【10月更文挑战第15天】
|
3月前
|
传感器 大数据 数据处理
深入理解Python中的生成器:用法及应用场景
【10月更文挑战第7天】深入理解Python中的生成器:用法及应用场景
110 1
|
3月前
|
存储 数据处理 Python
深入解析Python中的生成器:效率与性能的双重提升
生成器不仅是Python中的一个高级特性,它们是构建高效、内存友好型应用程序的基石。本文将深入探讨生成器的内部机制,揭示它们如何通过惰性计算和迭代器协议提高数据处理的效率。
|
2月前
|
存储 程序员 数据处理
深入理解Python中的生成器与迭代器###
本文将探讨Python中生成器与迭代器的核心概念,通过对比分析二者的异同,结合具体代码示例,揭示它们在提高程序效率、优化内存使用方面的独特优势。生成器作为迭代器的一种特殊形式,其惰性求值的特性使其在处理大数据流时表现尤为出色。掌握生成器与迭代器的灵活运用,对于提升Python编程技能及解决复杂问题具有重要意义。 ###
|
3月前
|
存储 大数据 数据处理
Python 中的列表推导式与生成器:特性、用途与区别
Python 中的列表推导式与生成器:特性、用途与区别
42 2
|
3月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
183 0