【音频处理】Melodyne 导入音频 ( 使用 Adobe Audition 录制音频 | 在 Melodyne 中打开录制的音频 | Melodyne 对音频素材的操作 | 音频分析算法 )

简介: 【音频处理】Melodyne 导入音频 ( 使用 Adobe Audition 录制音频 | 在 Melodyne 中打开录制的音频 | Melodyne 对音频素材的操作 | 音频分析算法 )

文章目录

一、使用 Adobe Audition 录制音频

二、在 Melodyne 中打开录制的音频

三、Melodyne 对音频素材的操作

四、Melodyne 音频分析算法





一、使用 Adobe Audition 录制音频


参考 【音频处理】使用 Adobe Audition 录制电脑内部声音 ( 启用电脑立体声混音 | Adobe Audition 中设置音频设备 | Adobe Audition 内录 ) 博客进行内录 ;






二、在 Melodyne 中打开录制的音频


将上述录制完毕的音频直接拖动到 Melodyne 软件的空白处 , 可以自动打开该音频 , 同时自动分析该音频的音高 , 显示在界面中 ;

image.png



纵向网格的标尺上 , 标记的是音高名称 , 每个标尺单位是一个半音音程 , 取值范围 0 00 ~ 127 127127 ;


每个音符的纵坐标轴标尺 , 就是该音符的音高 ;


音符与纵向标尺对齐程度 , 就是当前音符的偏差程度 , 音符处于标尺正中央位置 , 说明该音符音准正确 ;



横向网格的标尺 , 代表节拍 和 小节 ;


鼠标左键长按在 横向标尺 最右端的 1 4 \cfrac{1}{4}

4

1


 位置 , 会弹出可以设置的节拍网格精度 , 默认是 1 4 \cfrac{1}{4}

4

1


 , 也可以设置成其它精度 ;


1 4 T \cfrac{1}{4}T

4

1


T 是 四分音符 3 33 连音 ;


image.png





三、Melodyne 对音频素材的操作


Melodyne 对音频素材进行了如下分析 :


转换成音符 : 录制的素材 , 被 Melodyne 转为单个波形 , 以音符的形式显示在对应音高位置上 , 横轴是时间 , 纵轴是音高 , 取值范围 0   127 0 ~ 1270 127 ;


编辑声部类型 : Melodyne 既可以编辑 旋律声部 如人声演唱 , 乐器演奏等 , 也可以编辑 节奏声部 如 打击乐器 ; 如果录入的是打击乐 , 使用的是另外一种算法 ;






四、Melodyne 音频分析算法


音频分析算法 : 在 Melodyne 菜单 " 定义 " 下 , 可以设置 旋律模式 , 打击模式 , 复调模式 , 等运算法则 ;


录入音频时 , Melodyne 会自动选择正确的算法 , 如果选择的算法不对 , 可以随时在此处更改音频分析算法 ;

image.png



选择 " 重置检测到打击模式 " , 所有的音符都会被设置到相同的音高 ;


image.png

目录
相关文章
|
5月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
164 3
|
8天前
|
供应链 算法 搜索推荐
从公布的前十一批其他算法备案通过名单分析
2025年3月12日,国家网信办发布算法备案信息,深度合成算法通过395款,其他算法45款。前10次备案中,深度合成算法累计3234款,其他类别647款。个性化推送类占比49%,涵盖电商、资讯、视频推荐;检索过滤类占31.53%,用于搜索优化和内容安全;调度决策类占9.12%,集中在物流配送等;排序精选类占8.81%,生成合成类占1.55%。应用领域包括电商、社交媒体、物流、金融、医疗等,互联网科技企业主导,技术向垂直行业渗透,内容安全和多模态技术成新增长点。未来大模型检索和多模态生成或成重点。
从公布的前十一批其他算法备案通过名单分析
|
9天前
|
人工智能 自然语言处理 供应链
从第十批算法备案通过名单中分析算法的属地占比、行业及应用情况
2025年3月12日,国家网信办公布第十批深度合成算法通过名单,共395款。主要分布在广东、北京、上海、浙江等地,占比超80%,涵盖智能对话、图像生成、文本生成等多行业。典型应用包括医疗、教育、金融等领域,如觅健医疗内容生成算法、匠邦AI智能生成合成算法等。服务角色以面向用户为主,技术趋势为多模态融合与垂直领域专业化。
|
7天前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告
|
22天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
31 3
|
10天前
|
人工智能 自然语言处理 算法
从第九批深度合成备案通过公示名单分析算法备案属地、行业及应用领域占比
2024年12月20日,中央网信办公布第九批深度合成算法名单。分析显示,教育、智能对话、医疗健康和图像生成为核心应用领域。文本生成占比最高(57.56%),涵盖智能客服、法律咨询等;图像/视频生成次之(27.32%),应用于广告设计、影视制作等。北京、广东、浙江等地技术集中度高,多模态融合成未来重点。垂直行业如医疗、教育、金融加速引入AI,提升效率与用户体验。
|
2月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
3月前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
70 6
|
4月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
110 1
|
5月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。