谷歌提前开源AlphaFold 2!Nature、Science同时公开两大蛋白质结构预测工具(二)

简介: 昨日,DeepMind和华盛顿大学分别在nature和Science两大顶级杂志发布了各自预测蛋白质结构的工具,并同时开源了代码。

 DeepMind表示,AlphaFold 2可以对蛋白质的基本物理结构进行十分准确的预测,并能够在几天内生成高精度的结构。 此外,模型还能利用内部的内部置信度来预测每个预测的蛋白质结构中哪些部分是可靠的。 训练数据来自大约17万个蛋白质结构,以及包含未知结构的蛋白质序列的大型数据库。 期间DeepMind使用了16个TPU进行训练(即128个TPUv3核心或大致相当于约100-200个GPU)。 

39.jpg

神经网络模型结构 其中,模型对蛋白质序列以及氨基酸残基对进行操作,在两种表征之间迭代传递信息以生成结构。 

image.jpeg

                                          AlphaFold生成的蛋白质高精度结构 

image.jpeg


                                  架构细节


RoseTTAFold:媲美AlphaFold 2的预测工具


无独有偶,隔壁Science杂志也刊登了另一个蛋白质结构预测的工具,名叫「RoseTTAFold」,特点是「快、准、狠」。 2020年,DeepMind在CASP 14大会上介绍了它在该蛋白质结构预测上的显著进展。 华盛顿大学医学院蛋白质设计研究所的研究人员看在眼里,受其启发,与哈佛、剑桥、德克萨斯大学西南医学中心、劳伦斯伯克利国家实验室联手,共同研发了一款基于深度学习的蛋白质结构预测工RoseTTAFold。 这款工具利用深度学习,仅凭有限的信息,就能在普通游戏本上快速而准确地预测蛋白质结构,在短时间就能构建出复杂的生物组建模型。 目前,该研究团队已经用RoseTTAFold计算出了数百种新的蛋白质结构,其中就包括了许多鲜为人知的人类基因组蛋白。 RoseTTAFold预测出了与脂质代谢问题、炎症紊乱和癌细胞生长相关的蛋白质结构。 RoseTTAFold是一个「三轨」神经网络("three-track" neural network),它能够兼顾蛋白质序列模式、氨基酸如何相互作用以及蛋白质三维结构的可能性。 在这个架构中,信息在一维(氨基酸序列)、二维(距离)和三维(坐标)之间来回流动,从而能够集中推理出蛋白质化学部分与折叠结构之间的关系。 


image.jpegRoseTTAFold 架构包含一、二、三维注意力轨道,轨道之间信息能够来回流动image.jpeg                                       在CASP14目标取得的平均TM-scoreimage.jpeg

在CAMEO实验中取得的盲基准结果 蛋白质结构预测不断取得新进展,最关键的问题莫过于:能够使用什么准确的蛋白质结构模型? 团队研究了RoseTTAFold通过X射线晶体学和低温电子显微镜,研究了促进实验结构测定实用性,为目前为之结构的关键蛋白质提供模型。 RoseTTAFold方法的准确性远高于现有方法,因此,研究人员希望能够测试出这款工具是否能够解决分子置换(MR)这一从未解决的问题。 在蛋白质数据库(PDB)中,有四种蛋白无法用MR解决:牛属甘氨酸N-酰基转移酶(GLYAT)、细菌氧化还原酶、细菌表面层蛋白(SLP)和来自真菌平革菌属金孢子菌属的分泌蛋白,因此研究人员使用RoseTTAFold重新分析蛋白质结构。 



image.jpeg

由于蛋白质结构的测定能够为生物功能和机制提供大量见解,团队也研究了RoseTTAFold是否也能有这样的功能。 研究人员主要针对两组蛋白:目前未知结构的G蛋白偶联受体;与疾病相关的人类蛋白质。 研究结果发现,即使没有已知结构的密切同源物,RoseTTAFold模型在活性和非活性状态下也能做到准确预测构型。



image.jpeg


研究人员使用RoseTTAFold工具,从序列信息中预测了大肠杆菌蛋白复合物的结构。图A中,灰色表示第一条亚基,彩色表示第二条亚基。图C是RoseTTAFold生成的IL-12R/IL-12复合结构。 论文一作Minkyung Baek希望RoseTTAFold这个新工具未来能够造福整个研究领域。



相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
【4月更文挑战第12天】斯坦福大学研究团队在Nature子刊发表论文,展示人工智能如何从300亿个分子中筛选出6种新型抗生素候选分子,为抗药性问题提供新解决方案。利用深度学习算法,AI模型考虑化学结构及合成可行性,发现独特化合物,加速药物研发。然而,成功应用还需临床试验验证及克服安全性和耐药性挑战。AI技术在药物设计中的角色引起关注,强调平衡使用与基础科学研究的重要性。
55 1
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
|
2天前
|
人工智能 自然语言处理
米开朗基罗怎么说?谷歌DeepMind推出长上下文评估新框架
谷歌DeepMind团队提出了一种名为“米开朗基罗”(Michelangelo)的新型评估框架,通过潜在结构查询(LSQ)来全面评估大型语言模型(LLM)的长上下文理解能力。相比传统方法,米开朗基罗框架不仅评估模型的检索能力,还能更深入地验证其对上下文的理解和推理能力。
73 50
|
6月前
|
人工智能
MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率
【4月更文挑战第16天】研究人员集成12个大型语言模型(LLM)组成“硅基群体”,在预测比赛中与925名人类预测者对比。研究发现,LLM群体的预测准确性与人类群体无显著差异,且通过集成可抵消个体模型的偏差,提高预测准确。GPT-4和Claude 2等模型结合人类预测后,准确度提升17%至28%。然而,个别LLM预测精度不一,模型选择和校准度是提升预测性能的关键,同时LLM在时间跨度和现实场景适应性方面仍有挑战。
91 6
MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率
|
6月前
|
机器学习/深度学习 计算机视觉
大模型一定就比小模型好?谷歌的这项研究说不一定
【5月更文挑战第5天】谷歌研究挑战传统观念,指出在生成图像任务中,小模型并不一定逊色于大模型。实验显示小模型在有限计算资源下能生成高质量图像,且泛化性能佳。在多个图像生成任务中,小模型的表现与大模型相当甚至更好,暗示了小模型在该领域的潜力。这一发现提示了在追求性能时需综合考虑模型规模和效率。论文链接:https://arxiv.org/pdf/2404.01367.pdf
53 2
|
机器学习/深度学习 人工智能 自然语言处理
LLM评估综述论文问世,分三方面全面总结,还带资料库
LLM评估综述论文问世,分三方面全面总结,还带资料库
319 0
|
机器学习/深度学习 编解码 机器人
伯克利,斯坦福,宾大联合发表:从观察和交互中学习预测模型
伯克利,斯坦福,宾大联合发表:从观察和交互中学习预测模型
|
机器学习/深度学习
斯坦福、微软联手,用扩散模型进行蛋白质结构生成,已开源
斯坦福、微软联手,用扩散模型进行蛋白质结构生成,已开源
124 0
|
机器学习/深度学习 人工智能 安全
ICLR 2022 Spotlight | MSU联合MIT-IBM提出首个黑箱防御框架
ICLR 2022 Spotlight | MSU联合MIT-IBM提出首个黑箱防御框架
|
机器学习/深度学习 人工智能 运维
ECCV 2022 Oral | 无需微调即可推广,上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架
ECCV 2022 Oral | 无需微调即可推广,上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架
139 0
|
自然语言处理 算法 数据挖掘
ACL2022 | 清华大学、DeepMind等指出现有小样本学习方法并不稳定有效,提出评价框架
ACL2022 | 清华大学、DeepMind等指出现有小样本学习方法并不稳定有效,提出评价框架
164 0
下一篇
无影云桌面