谷歌提前开源AlphaFold 2!Nature、Science同时公开两大蛋白质结构预测工具(二)

简介: 昨日,DeepMind和华盛顿大学分别在nature和Science两大顶级杂志发布了各自预测蛋白质结构的工具,并同时开源了代码。

 DeepMind表示,AlphaFold 2可以对蛋白质的基本物理结构进行十分准确的预测,并能够在几天内生成高精度的结构。 此外,模型还能利用内部的内部置信度来预测每个预测的蛋白质结构中哪些部分是可靠的。 训练数据来自大约17万个蛋白质结构,以及包含未知结构的蛋白质序列的大型数据库。 期间DeepMind使用了16个TPU进行训练(即128个TPUv3核心或大致相当于约100-200个GPU)。 

39.jpg

神经网络模型结构 其中,模型对蛋白质序列以及氨基酸残基对进行操作,在两种表征之间迭代传递信息以生成结构。 

image.jpeg

                                          AlphaFold生成的蛋白质高精度结构 

image.jpeg


                                  架构细节


RoseTTAFold:媲美AlphaFold 2的预测工具


无独有偶,隔壁Science杂志也刊登了另一个蛋白质结构预测的工具,名叫「RoseTTAFold」,特点是「快、准、狠」。 2020年,DeepMind在CASP 14大会上介绍了它在该蛋白质结构预测上的显著进展。 华盛顿大学医学院蛋白质设计研究所的研究人员看在眼里,受其启发,与哈佛、剑桥、德克萨斯大学西南医学中心、劳伦斯伯克利国家实验室联手,共同研发了一款基于深度学习的蛋白质结构预测工RoseTTAFold。 这款工具利用深度学习,仅凭有限的信息,就能在普通游戏本上快速而准确地预测蛋白质结构,在短时间就能构建出复杂的生物组建模型。 目前,该研究团队已经用RoseTTAFold计算出了数百种新的蛋白质结构,其中就包括了许多鲜为人知的人类基因组蛋白。 RoseTTAFold预测出了与脂质代谢问题、炎症紊乱和癌细胞生长相关的蛋白质结构。 RoseTTAFold是一个「三轨」神经网络("three-track" neural network),它能够兼顾蛋白质序列模式、氨基酸如何相互作用以及蛋白质三维结构的可能性。 在这个架构中,信息在一维(氨基酸序列)、二维(距离)和三维(坐标)之间来回流动,从而能够集中推理出蛋白质化学部分与折叠结构之间的关系。 


image.jpegRoseTTAFold 架构包含一、二、三维注意力轨道,轨道之间信息能够来回流动image.jpeg                                       在CASP14目标取得的平均TM-scoreimage.jpeg

在CAMEO实验中取得的盲基准结果 蛋白质结构预测不断取得新进展,最关键的问题莫过于:能够使用什么准确的蛋白质结构模型? 团队研究了RoseTTAFold通过X射线晶体学和低温电子显微镜,研究了促进实验结构测定实用性,为目前为之结构的关键蛋白质提供模型。 RoseTTAFold方法的准确性远高于现有方法,因此,研究人员希望能够测试出这款工具是否能够解决分子置换(MR)这一从未解决的问题。 在蛋白质数据库(PDB)中,有四种蛋白无法用MR解决:牛属甘氨酸N-酰基转移酶(GLYAT)、细菌氧化还原酶、细菌表面层蛋白(SLP)和来自真菌平革菌属金孢子菌属的分泌蛋白,因此研究人员使用RoseTTAFold重新分析蛋白质结构。 



image.jpeg

由于蛋白质结构的测定能够为生物功能和机制提供大量见解,团队也研究了RoseTTAFold是否也能有这样的功能。 研究人员主要针对两组蛋白:目前未知结构的G蛋白偶联受体;与疾病相关的人类蛋白质。 研究结果发现,即使没有已知结构的密切同源物,RoseTTAFold模型在活性和非活性状态下也能做到准确预测构型。



image.jpeg


研究人员使用RoseTTAFold工具,从序列信息中预测了大肠杆菌蛋白复合物的结构。图A中,灰色表示第一条亚基,彩色表示第二条亚基。图C是RoseTTAFold生成的IL-12R/IL-12复合结构。 论文一作Minkyung Baek希望RoseTTAFold这个新工具未来能够造福整个研究领域。



相关文章
|
3天前
|
人工智能 自然语言处理 Shell
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
仅用3分钟,百炼调用满血版Deepseek-r1 API,享受百万免费Token。阿里云提供零门槛、快速部署的解决方案,支持云控制台和Cloud Shell两种方式,操作简便。Deepseek-r1满血版在推理能力上表现出色,尤其擅长数学、代码和自然语言处理任务,使用过程中无卡顿,体验丝滑。结合Chatbox工具,用户可轻松掌控模型,提升工作效率。阿里云大模型服务平台百炼不仅速度快,还确保数据安全,值得信赖。
129305 24
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
|
5天前
|
人工智能 API 网络安全
用DeepSeek,就在阿里云!四种方式助您快速使用 DeepSeek-R1 满血版!更有内部实战指导!
DeepSeek自发布以来,凭借卓越的技术性能和开源策略迅速吸引了全球关注。DeepSeek-R1作为系列中的佼佼者,在多个基准测试中超越现有顶尖模型,展现了强大的推理能力。然而,由于其爆火及受到黑客攻击,官网使用受限,影响用户体验。为解决这一问题,阿里云提供了多种解决方案。
16175 37
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
4天前
|
并行计算 PyTorch 算法框架/工具
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
1190 8
|
13天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
3347 117
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
8天前
|
人工智能 自然语言处理 API
DeepSeek全尺寸模型上线阿里云百炼!
阿里云百炼平台近日上线了DeepSeek-V3、DeepSeek-R1及其蒸馏版本等六款全尺寸AI模型,参数量达671B,提供高达100万免费tokens。这些模型在数学、代码、自然语言推理等任务上表现出色,支持灵活调用和经济高效的解决方案,助力开发者和企业加速创新与数字化转型。示例代码展示了如何通过API使用DeepSeek-R1模型进行推理,用户可轻松获取思考过程和最终答案。
|
5天前
|
人工智能 自然语言处理 程序员
如何在通义灵码里用上DeepSeek-V3 和 DeepSeek-R1 满血版671B模型?
除了 AI 程序员的重磅上线外,近期通义灵码能力再升级全新上线模型选择功能,目前已经支持 Qwen2.5、DeepSeek-V3 和 R1系列模型,用户可以在 VSCode 和 JetBrains 里搜索并下载最新通义灵码插件,在输入框里选择模型,即可轻松切换模型。
853 14
|
12天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
1875 9
阿里云PAI部署DeepSeek及调用
|
9天前
|
人工智能 数据可视化 Linux
【保姆级教程】3步搞定DeepSeek本地部署
DeepSeek在2025年春节期间突然爆火出圈。在目前DeepSeek的网站中,极不稳定,总是服务器繁忙,这时候本地部署就可以有效规避问题。本文以最浅显易懂的方式带读者一起完成DeepSeek-r1大模型的本地部署。
|
11天前
|
缓存 自然语言处理 安全
快速调用 Deepseek API!【超详细教程】
Deepseek 强大的功能,在本教程中,将指导您如何获取 DeepSeek API 密钥,并演示如何使用该密钥调用 DeepSeek API 以进行调试。

热门文章

最新文章