大脑飞行是啥?Hinton推特引热议,神经网络是让小鸟飞起来的「羽毛」?(二)

简介: 神经网络的设计到底能不能借鉴人类大脑构造?近日,Hinton在Twitter上开了一个小讨论:人们反对在设计神经网络时从大脑获取灵感,就像在设计飞行器时从羽毛中获取灵感一样。这次没论文,就是一个观点,你同意吗?

对大脑来说反向传播是不可能的


在反向传播算法出现的好几十年,关于大脑如何学习的理论主要受「赫布理论」(1949)影响,通常被解释为「共同激发的神经元之间存在连接」,即相邻神经元的活动越相关,它们之间的突触联系就越强。

77.jpg

这一理论经过一些修改后,成功解释了某些类型的学习和分类任务。 虽然赫布理论在使用错误信息时,是一种的非常狭窄、特殊且不敏感的方法,但对神经学家来说,它仍然是最好的学习规则,20世纪50年代后期,它甚至激发了第一个人工神经网络的发展。 这些网络中的每个人工神经元接收多个输入并产生一个输出,和真实的神经元一样。人工神经元用一个所谓的「突触」权重(一个表示该输入重要性的数字),对输入进行加权求和。 到了20世纪60年代,这些神经元可以被组织成一个有输入层和输出层的网络,「人工神经网络」可以被训练来解决某些简单的问题。

在训练过程中,神经网络为其神经元确定最佳权值,以降低误差。  然而直到1986年以前,没有人知道如何有效地训练带有「隐藏层」的人工神经网络,直到Hinton发表了「反向传播算法」相关论文。


78.jpg


反向传播的发明立即引起了一些神经科学家的强烈抗议,他们认为这种方法不可能在真正的大脑中起作用。 首先,虽然计算机可以很容易地在两个阶段实现该算法,但是对于生物神经网络来说,这样做并不简单。

其次,是计算神经科学家所说的权重传递问题: 反向传播算法复制或「传输」关于推理所涉及的所有突触权重的信息,并更新这些权重以获得更高的准确性。 但是在生物网络中,神经元只能看到其他神经元的输出,而不能看到影响输出的突触权重或内部过程。

从神经元的角度来看,「知道自己的突触权重是可以的,你不能知道其他神经元的突触权重。」

79.jpg

任何生物学上似乎可行的学习规则也需要遵守神经元只能从相邻神经元获取信息的限制; 反向传播可能需要从更远的神经元获取信息。

因此,「如果你反向传播信号,大脑似乎不可能计算。」

胶囊网络


2017年,深度学习三巨头之一的Geoffrey Hinton,发表了两篇论文解释「胶囊网络(Capsule Networks)」。

在当时,这是一种全新的神经网络,它基于一种新的结构——胶囊,在图像分类上取得了更优越的性能,解决了CNN的某些缺陷,例如无法理解图片和语义关系、没有空间分层和空间推理的能力等。


80.jpg

在CNN中,左右两幅图都可被网络识别为人脸

甚至,Hinton自己也公开表示过,他要证明为何卷积神经网络完全是「垃圾」,应该以自己的胶囊网络代替。过去三年中,他每年都会推出一个新版本的胶囊网络。 今年2月,Hinton发表了一篇新论文:如何在神经网络中表示部分-整体层次结构?(How to represent part-whole hierarchies in a neural network)


81.jpg

本论文中,他提出了一个叫做GLOM的架构,可以在神经网络中使用胶囊来表示视觉的层次结构,即部分-整体的关系。

GLOM通过提出island的概念来表示解析树的节点。GLOM可以显著提升transformer类的模型的可解释性。可以显著提升transformer类的模型的可解释性。

82.jpg

作为深度学习的大大牛,Hinton提出了反向传播(BP),随后又一直在否定自己的工作,提出了「胶囊网络」还有其他工作来增加生物学上的解释,对于揭开大脑构造和神经网络之谜,他的思考从未停止。

相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【8月更文挑战第1天】在当今科技飞速发展的时代,AI已成为日常生活中不可或缺的一部分。神经网络作为AI的核心,通过模拟人脑中的神经元连接方式处理复杂数据模式。利用Python及其强大的库TensorFlow,我们可以轻松构建神经网络模型。示例代码展示了如何建立一个含有两层隐藏层的简单神经网络,用于分类任务。神经网络通过反向传播算法不断优化权重和偏置,从而提高预测准确性。随着技术的进步,神经网络正变得越来越深、越来越复杂,能够应对更加艰巨的挑战,推动着AI领域向前发展。
53 2
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
53 10
|
4月前
|
机器学习/深度学习
深度学习的奥秘:如何通过神经网络模拟人类大脑
【8月更文挑战第23天】在这篇文章中,我们将探索深度学习的奥秘,特别是神经网络如何模拟人类大脑的工作方式。我们将从基础的神经网络开始,逐步深入到深度学习的核心概念,包括反向传播和卷积神经网络。我们还将讨论深度学习在现实世界中的应用,以及它如何改变了我们的生活。最后,我们将探讨深度学习的未来发展方向,以及它可能带来的影响。
|
7月前
|
数据可视化
R语言推特twitter网络转发可视化分析
R语言推特twitter网络转发可视化分析
|
机器学习/深度学习 存储 人工智能
7 Papers & Radios | Hinton前向-前向神经网络训练算法;科学家造出「虫洞」登Nature封面
7 Papers & Radios | Hinton前向-前向神经网络训练算法;科学家造出「虫洞」登Nature封面
134 0
|
机器学习/深度学习 存储 算法
大脑带来的启发:深度神经网络优化中突触整合原理介绍
大脑带来的启发:深度神经网络优化中突触整合原理介绍
243 0
|
机器学习/深度学习 算法
Hinton最新研究:神经网络的未来是前向-前向算法|NeurIPS 2022特邀演讲(2)
Hinton最新研究:神经网络的未来是前向-前向算法|NeurIPS 2022特邀演讲
|
机器学习/深度学习 存储 人工智能
Hinton最新研究:神经网络的未来是前向-前向算法|NeurIPS 2022特邀演讲
Hinton最新研究:神经网络的未来是前向-前向算法|NeurIPS 2022特邀演讲
185 0
|
5天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
42 17
下一篇
DataWorks