【数据结构和算法】第七锻造,链表真身

简介: 链表是一个和数组不一样的存储方式。我们都知道数组的存储地址是连续的,这样就不能很好的利用好内存空间,而链表就解决了这个问题,链表是一存储地址不连续的的存储结构,这样的好处就是能节省空间。

 目录

一、前言

二、链表的简介

三、单向链表的API设置

代码实现

结点类:链表的设置结点类少不了

成员变量和构造方法

清空链表,链表的长度,链表是否为空

获取指定位置处的元素

插入元素t(在链表的最后以结点后插入元素)

在指定i处,添加元素t

删除指定位置i处的元素并返回被删除的元素

查找元素t在链表中第一次出现的位置

提供一个遍历的方法,实现Iterable接口

全部代码概览:

测试类下:

运行效果图:

四、鲁迅说:一个是关于head.next,另一个也是head.next


一、前言

链表是一个和数组不一样的存储方式。我们都知道数组的存储地址是连续的,这样就不能很好的利

用好内存空间,而链表就解决了这个问题,链表是一存储地址不连续的的存储结构,这样的好处

就是能节省空间。

二、链表的简介

链表是由一系列的结点构成的,链表的第一个元素为头结点,头结点的特点是;不存放具体的数

表示单链表的表头,比如要找一个结点就是从头结点一个一个往下找的。

每一个结点有一个类似于指针的next,用来指向下一个结点,和一个date区域用于存储数据

头结点不存放数据,最后一个结点不指向null。

image.pngimage.gif

三、单向链表的API设置

image.gif

代码实现

image.png

结点类:链表的设置结点类少不了

//定义节点类(成员内部类)
    private class Node{
        //存储数据
        T item;
        //下一个节点
        Node next;
        public Node(T item,Node next){
            this.item=item;
            this.next=next;
        }
    }

image.gif

成员变量和构造方法

//记录头节点
    private Node head;
    //记录链表的长度
    private int N;
    //构造方法用来初始化成员变量
    public LinkList(){
        this.head=new Node(null,null);
        this.N=0;
    }

image.gif

清空链表,链表的长度,链表是否为空

//方法1:清空链表
    public void clear(){
        head.next=null;//将头结点的指向置空
        this.N=0;//元素个数变为0
    }
    //方法2:链表的长度
    public int length(){
        return N;//N就是链表长度
    }
    //方法3:判断链表是否为空
    public boolean isEmpty(){
        return this.N==0;//只需判断N是否为0即可
    }

image.gif

获取指定位置处的元素

//方法4:获取指定位置处的元素
    public T get(int i){
             Node node=head.next;//node是下一个结点
          if(node!=null){//有下一个结点
            for(int index=0;index<i;index++){
                node=node.next;//往下一个结点移动
            }
            return node.item;
        }
        return null;
    }

image.gif

插入元素t(在链表的最后以结点后插入元素)

//方法5:插入元素t(在链表的最后以结点后插入元素)
    public void insert(T t){
        //创建一个结点
        Node node=head;
        while(node.next!=null){//找到最后一个结点的前一个结点
            node=node.next;
        }
        Node newLast=new Node(t, null);
        //之前的最后指向现在的最后结点
       node.next=newLast;
       //元素个数加一
        N++;
    }

image.gif

在指定i处,添加元素t

//方法6:在指定i处,添加元素t
    public void insert(int i,T t){
        //创建一个结点,从头结点开始
        Node node =head;
        for(int index=0;index<i;index++){//找到i位置处的前一个元素
            node=node.next;
        }
        //当前i位置的结点
        Node oldNode=node.next;
        //创建结点t
        Node newNode=new Node(t, null);
        //此时node表示的还是前一个结点,所以只需要把前一个结点指向创建的新结点
        node.next=newNode;
        //新结点指向原来i位置处的结点,即可完成连接
        newNode.next=oldNode;
        //元素个数加一
        N++;
    }

image.gif

删除指定位置i处的元素并返回被删除的元素

//方法7:删除指定位置i处的元素并返回被删除的元素
    public T remove(int i) {
        //创建一个结点,从头节点开始
        Node node=head;
        //因为是从头结点开始的,所以下面循环会找到i位置的前一个结点
        for(int index=0;index<i;index++){
            node=node.next;
        }
        //i位置处的结点
        Node iNode=node.next;
        //直接让i位置处的前以结点指向i位置的后一结点就可以删除i位置处的结点
        node.next=iNode.next;//或者也可以node.next=node.next.next;
        //元素减1
        N--;
        return iNode.item;
    }

image.gif

查找元素t在链表中第一次出现的位置

//方法8:查找元素t在链表中第一次出现的位置
    public int indexOf(T t){
        Node node=head;
        for(int index=0;node.next!=null;index++){
            node=node.next;
            if(node.item.equals(t)){
                return index;
            }
        }
        //找不到
        return -1;
    }

image.gif

提供一个遍历的方法,实现Iterable接口

public class LinkList<T> implements Iterable{}

image.gif

//实现Iterable接口,重写iterator方法
    @Override
    //因为要的接口对象(接口不能直接new),所以我们必须创建一个对象去实现这个接口
    public Iterator iterator() {
        return new LIterator()  ;
    }
    public class LIterator implements Iterator{
     //实现Iterator接口重写hasNext()和next()两个方法
        private Node n;
        public LIterator(){
            this.n=head;//从头结点开始
        }
        @Override
        public boolean hasNext() {//是否有元素
            return n.next!=null;
        }
        @Override
        public Object next() {//返回下一个元素
            n=n.next;
            return n.item;
        }
    }

image.gif

全部代码概览:

import java.util.Iterator;
public class LinkList<T> implements Iterable{
    //定义节点类
    private class Node{
        //存储数据
        T item;
        //下一个节点
        Node next;
        public Node(T item,Node next){
            this.item=item;
            this.next=next;
        }
    }
    //记录头节点
    private Node head;
    //记录链表的长度
    private int N;
    //构造方法用来初始化成员变量
    public LinkList(){
        this.head=new Node(null,null);
        this.N=0;
    }
    //方法1:清空链表
    public void clear(){
        head.next=null;//将头结点的指向置空
        this.N=0;//元素个数变为0
    }
    //方法2:链表的长度
    public int length(){
        return N;//N就是链表长度
    }
    //方法3:判断链表是否为空
    public boolean isEmpty(){
        return this.N==0;//只需判断N是否为0即可
    }
    //方法4:获取指定位置处的元素
    public T get(int i){
             Node node=head.next;//node是下一个结点
          if(node!=null){//有下一个结点
            for(int index=0;index<i;index++){
                node=node.next;//往下一个结点移动
            }
            return node.item;
        }
        return null;
    }
    //方法5:插入元素t(在链表的最后以结点后插入元素)
    public void insert(T t){
        //创建一个结点
        Node node=head;
        while(node.next!=null){//找到最后一个结点的前一个结点
            node=node.next;
        }
        Node newLast=new Node(t, null);
        //之前的最后指向现在的最后结点
       node.next=newLast;
       //元素个数加一
        N++;
    }
    //方法6:在指定i处,添加元素t
    public void insert(int i,T t){
        //创建一个结点,从头结点开始
        Node node =head;
        for(int index=0;index<i;index++){//找到i位置处的前一个元素
            node=node.next;
        }
        //当前i位置的结点
        Node oldNode=node.next;
        //创建结点t
        Node newNode=new Node(t, null);
        //此时node表示的还是前一个结点,所以只需要把前一个结点指向创建的新结点
        node.next=newNode;
        //新结点指向原来i位置处的结点,即可完成连接
        newNode.next=oldNode;
        //元素个数加一
        N++;
    }
    //方法7:删除指定位置i处的元素并返回被删除的元素
    public T remove(int i) {
        //创建一个结点,从头节点开始
        Node node=head;
        //因为是从头结点开始的,所以下面循环会找到i位置的前一个结点
        for(int index=0;index<i;index++){
            node=node.next;
        }
        //i位置处的结点
        Node iNode=node.next;
        //直接让i位置处的前以结点指向i位置的后一结点就可以删除i位置处的结点
        node.next=iNode.next;//或者也可以node.next=node.next.next;
        //元素减1
        N--;
        return iNode.item;
    }
    //方法8:查找元素t在链表中第一次出现的位置
    public int indexOf(T t){
        Node node=head;
        for(int index=0;node.next!=null;index++){
            node=node.next;
            if(node.item.equals(t)){
                return index;
            }
        }
        //找不到
        return -1;
    }
    //实现Iterable接口,重写iterator方法
    @Override
    //因为要的接口对象(接口不能直接new),所以我们必须创建一个对象去实现这个接口
    public Iterator iterator() {
        return new LIterator()  ;
    }
    public class LIterator implements Iterator{
     //实现Iterator接口重写hasNext()和next()两个方法
        private Node n;
        public LIterator(){
            this.n=head;//从头结点开始
        }
        @Override
        public boolean hasNext() {//是否有元素
            return n.next!=null;
        }
        @Override
        public Object next() {//返回下一个元素
            n=n.next;
            return n.item;
        }
    }
}

image.gif

测试类下:

public class LinkListText {
    public static void main(String[] args) {
        //创建链表对象
        LinkList<String> list=new LinkList<String>();
        list.insert("张三");
        list.insert("李四");
        list.insert("王五");
        list.insert("李四");
        System.out.println("链表为空吗:"+list.isEmpty());
        for(Object s:list){
            System.out.println(s);
        }
        //元素个数
        System.out.println("初始元素个数:"+list.length());
        System.out.println("----------------------");
        //插入
        list.insert(1,"赵六");
        list.insert(2,"历七");
        //元素个数
        System.out.println("插入后元素个数:"+list.length());
       //第一次出现的位置
        System.out.println("张三第一次出现的位置:"+list.indexOf("张三"));
        System.out.println("----------------------");
        for(Object s:list){
        System.out.println(s);
    }
        //清除链表
        list.clear();
        System.out.println("清除后,链表为空吗:"+list.isEmpty());
    }
}

image.gif

运行效果图:

image.png


image.gif

四、鲁迅说:一个是关于head.next,另一个也是head.next

有关于左右边的.next解读:

image.png


image.gif

左边的.next表示的是指向,右边的.next表示的下一个元素。

一般来说在左边的是指向,在右边的是下一个元素。(这里.next前可以是任意非null结点)

head.next!=null一样的道理。

目录
相关文章
|
14天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
76 29
|
14天前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
72 25
|
14天前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
58 23
|
1月前
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】单链表的基本运算(头歌实践教学平台习题)【合集】
本内容介绍了单链表的基本运算任务,涵盖线性表的基本概念、初始化、销毁、判定是否为空表、求长度、输出、求元素值、按元素值查找、插入和删除数据元素等操作。通过C++代码示例详细解释了顺序表和链表的实现方法,并提供了测试说明、通 - **任务描述**:实现单链表的基本运算。 - **相关知识**:包括线性表的概念、初始化、销毁、判断空表、求长度、输出、求元素值、查找、插入和删除等操作。 - **测试说明**:平台会对你编写的代码进行测试,提供测试输入和预期输出。 - **通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了测试通过后的预期输出结果。 开始你的任务吧,祝你成功!
38 5
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
49 2
|
2月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
68 20
|
2月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
3月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
328 9
|
3月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
53 1
|
1月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
142 77

热门文章

最新文章