网络数据的基本单位永远是 byte(字节)。Java NIO 提供 ByteBuffer 作为字节的容器,但该类过于复杂,有点难用。
ByteBuf是Netty当中的最重要的工具类,它与JDK的ByteBuffer原理基本上相同,也分为堆内与堆外俩种类型,但是ByteBuf做了极大的优化,具有更简单的API,更多的工具方法和优秀的内存池设计。
1 API
Netty 的数据处理 API 通过两个组件暴露——抽象类ByteBuf 和 接口 ByteBufHolder。
ByteBuf API 的优点:
它可以被用户自定义的缓冲区类型扩展
通过内置的复合缓冲区类型实现了透明的零拷贝;
容量可以按需增长(类似于 JDK 的 StringBuilder)
在读和写这两种模式之间切换不需要调用 ByteBuffer 的 flip()方法
读和写使用了不同的索引
支持方法的链式调用
支持引用计数
支持池化
其他类可用于管理 ByteBuf 实例的分配,以及执行各种针对于数据容器本身和它所持有的数据的操作。
2 Netty 的数据容器
所有网络通信最终都是基于底层的字节流传输,因此高效、方便、易用的数据接口是迷人的,而 Netty 的 ByteBuf 生而为满足这些需求。
2.1 工作原理
ByteBuf 维护俩不同索引:一个用于读取,一个用于写入:
- 从 ByteBuf 读取时,其 readerIndex 将会被递增已经被读取的字节数
- 当写入 ByteBuf 时,writerIndex 也会被递增
- 一个读索引和写索引都设置为 0 的 16 字节 ByteBuf
这些索引两两之间有什么关系呢?
若打算读取字节直到 readerIndex == writerIndex,会发生啥?此时,将会到达“可读取的”数据的末尾。类似试图读取超出数组末尾的数据一样,试图读取超出该点的数据也会抛 IndexOutOfBoundsException。
- read、write 开头的 ByteBuf 方法,会推进对应索引
- set、get 开头的操作则不会。后面的这些方法将在作为一个参数传入的一个相对索引上执行操作
可指定 ByteBuf 的最大容量。试图移动写索引(即 writerIndex)超过这个值将会触
发一个异常。(默认限制 Integer.MAX_VALUE。)
内存池化
非池化的堆内与堆外的 ByteBuf 示意图
ByteBuf heapBuffer = UnpooledByteBufAllocator.DEFAULT.heapBuffer(10); ByteBuf directBuffer = UnpooledByteBufAllocator.DEFAULT.directBuffer(10);
注意要手动将GC 无法控制的非堆内存的空间释放:
池化的堆内与堆外的 ByteBuf 示意图
字节级操作
派生缓冲区
派生缓冲区为 ByteBuf 提供了以专门的方式来呈现其内容的视图。这类视图通过以下方法创建:
- Unpooled.unmodifiableBuffer(…)
- order(ByteOrder)
- readSlice(int)
这些方法都将返回一个新的 ByteBuf 实例,但都具有自己独立的读、写和标记索引。
其内部存储和 JDK 的 ByteBuffer 一样,都是共享的。所以派生缓冲区的创建成本很低,但同时也表明若你修改了它的内容,也会同时修改对应源实例!
slice、slice(int, int)、retainedSlice、retainedSlice(int, int)
返回此缓冲区的可读字节的一部分。
此方法与buf.slice(buf.readerIndex(), buf.readableBytes())相同。
该方法不会调用retain(),引用计数不会增加。
retainedSlice系列方法调用类似slice().retain(),但此方法可能返回产生较少垃圾的缓冲区实现。
duplicate、retainedDuplicate
返回一个共享该缓冲区整个区域的缓冲区。
此方法不会修改此缓冲区的readerIndex或writerIndex
读取器和写入器标记将不会重复。
duplicate不会调用retain(),不会增加引用计数,而retainedDuplicate会。