阿里Sentinel核心源码解析-责任链模式最佳实践(下)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 阿里Sentinel核心源码解析-责任链模式最佳实践

客户端和 dashboard 交互

  • sentinel-transport 三个子工程,common 是基础包和接口定义
  • image.png
  • 若客户端要接入 dashboard,可以使用 netty-http 或 simple-http 中的一个。为何不直接使用 Netty,而要同时提供 http 选项?

因为你不一定使用 Java 来实现 dashboard,如果使用其他语言,使用 http 协议比较容易适配。


下面我们只介绍 http 的使用,首先,添加 simple-http 依赖:

<dependency>
   <groupId>com.alibaba.csp</groupId>
   <artifactId>sentinel-transport-simple-http</artifactId>
   <version>1.6.3</version>
</dependency>

然后在应用启动参数中添加 dashboard 服务器地址,同时可以指定当前应用的名称:

-Dcsp.sentinel.dashboard.server=127.0.0.1:8080 
  -Dproject.name=sentinel-learning

这个时候我们打开 dashboard 是看不到这个应用的,因为没有注册。

当我们在第一次使用 Sentinel 以后,Sentinel 会自动注册。

下面带大家看看过程是怎样的。首先,我们在使用 Sentinel 的时候会调用 SphU#entry:

image.png

这里使用了 Env 类,其实就是这个类做的事情:

image.png

进到 InitExecutor.doInit 方法:

image.png

这里使用 SPI 加载 InitFunc 的实现,加载了

  • CommandCenterInitFunc 类
    客户端启动的接口服务,提供给 dashboard 查询数据和规则设置使用
  • HeartbeatSenderInitFunc 类
    用于客户端主动发送心跳信息给 dashboard

HeartbeatSenderInitFunc#init

image.png

定时器,以一定的间隔不断发送心跳信息到 dashboard 应用

image.png

dashboard 有了这些信息,就可以对应用进行规则设置、到应用拉取数据用于页面展示等。


Sentinel 在客户端并未使用第三方 http 包,而是自己基于 JDK 的 Socket 和 ServerSocket 接口实现了简单的客户端和服务端,主要也是为了不增加依赖。


Sentinel 中秒级 QPS 的统计问题

Sentinel 统计了 分 和 秒 两个维度数据:

1、对于 分 来说,一轮是 60 秒,分为 60 个时间窗口,每个时间窗口是 1 秒

2、对于 秒 来说,一轮是 1 秒,分为 2 个时间窗口,每个时间窗口是 0.5 秒

如果我们用上面介绍的统计分维度的 BucketLeapArray 来统计秒维度数据可以吗?不行,因为会不准确。


设想一个场景,我们的一个资源,访问的 QPS 稳定是 10,假设请求是均匀分布的,在相对时间 0.0 - 1.0 秒区间,通过了 10 个请求,我们在 1.1 秒的时候,观察到的 QPS 可能只有 5,因为此时第一个时间窗口被重置了,只有第二个时间窗口有值。


所以,我们可以知道,如果用 BucketLeapArray 来实现,会有 0~50% 的数据误差,这肯定是不能接受的。

那能不能增加窗口的数量来降低误差到一个合理的范围内呢?这个大家可以思考一下,考虑一下它对于性能是否有较大的损失。


StatisticNode 源码,对于秒维度数据统计,Sentinel 使用下面的构造方法:

image.png

OccupiableBucketLeapArray 的 newEmptyBucket 和 resetWindowTo 这两个方法和 BucketLeapArray 有点不一样,也就是在重置的时候,它不是直接重置成 0。


这个类里面的 borrowArray 做了一些事情,它是 FutureBucketLeapArray 的实例,这个类和前面接触的 BucketLeapArray 差不多,但是加了一个 Future 单词。它和 BucketLeapArray 唯一的不同是,重写了下面这个方法:

image.png

若按照这种定义,在调用 values() 方法的时候,所有的 2 个窗口都是过期的,将得不到任何的值。可以判断,给这个数组添加值的时候,使用的时间应该不是当前时间,而是一个未来的时间点。


回到 OccupiableBucketLeapArray 类,重置使用了 borrowArray 的值:


当主线到达某个时间窗口的时候,如果发现当前时间窗口是过期的,会重置这个窗口

image.png

再看 borrowArray 中的值是怎么进来的。

我们很容易可以找到,只可能通过这里的 addWaiting 方法设置:

image.png

接下来,我们找这个方法被哪里调用了,只有 DefaultController 类中有调用。

这个类是流控中的 “快速失败” 规则控制器,我们简单看一下代码:

image.png

OccupiableBucketLeapArray

Occupiable 这里代表可以被预占的意思,结合上面 DefaultController 的源码,可以知道它原来是用来满足 prioritized 类型的资源的,我们可以认为这类请求有较高的优先级。如果 QPS 达到阈值,这类资源通常不能用快速失败返回, 而是让它去预占未来的 QPS 容量。

当然,令人失望的是,这里根本没有解开 QPS 是怎么准确计算的这个问题。

下面证明 Sentinel 的秒维度的 QPS 统计是不准确的

public static void main(String[] args) {
    // 下面几行代码设置了 QPS 阈值是 100
    FlowRule rule = new FlowRule("test");
    rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
    rule.setCount(100);
    rule.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_DEFAULT);
    List<FlowRule> list = new ArrayList<>();
    list.add(rule);
    FlowRuleManager.loadRules(list);
    // 先通过一个请求,让 clusterNode 先建立起来
    try (Entry entry = SphU.entry("test")) {
    } catch (BlockException e) {
    }
    // 起一个线程一直打印 qps 数据
    new Thread(new Runnable() {
        @Override
        public void run() {
            while (true) {
                System.out.println(ClusterBuilderSlot.getClusterNode("test").passQps());
            }
        }
    }).start();
    while (true) {
        try (Entry entry = SphU.entry("test")) {
            Thread.sleep(5);
        } catch (BlockException e) {
            // ignore
        } catch (InterruptedException e) {
            // ignore
        }
    }
}

然后观察下输出,QPS 数据在 50~100 这个区间一直变化,印证秒级 QPS 统计极度不准确。

参考

目录
相关文章
|
2天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
21天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
3天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
76 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
79 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
65 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
69 0
|
2月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
91 0

推荐镜像

更多