第十二章 Spring Cloud Alibaba Sentinel

简介: 第十二章 Spring Cloud Alibaba Sentinel

前言


Sentinel 是由阿里巴巴中间件团队开发的开源项目,是一种面向分布式微服务架构的轻量级高可用流量控制组件。
Sentinel 主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度帮助用户保护服务的稳定性。


1、简介


Sentinel 主要由以下两个部分组成:

  • Sentinel 核心库:Sentinel 的核心库不依赖任何框架或库,能够运行于 Java 8 及以上的版本的运行时环境中,同时对 Spring Cloud、Dubbo 等微服务框架提供了很好的支持。
  • Sentinel 控制台(Dashboard):Sentinel 提供的一个轻量级的开源控制台,它为用户提供了机器自发现、簇点链路自发现、监控、规则配置等功能。


1.1、基本概念


Sentinel 的基本概念有两个,它们分别是:资源和规则。

基本概念 描述
资源 资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如由应用程序提供的服务或者是服务里的方法,甚至可以是一段代码。

我们可以通过 Sentinel 提供的 API 来定义一个资源,使其能够被 Sentinel 保护起来。通常情况下,我们可以使用方法名、URL 甚至是服务名来作为资源名来描述某个资源。 |

| 规则 | 围绕资源而设定的规则。Sentinel 支持流量控制、熔断降级、系统保护、来源访问控制和热点参数等多种规则,所有这些规则都可以动态实时调整。 |


2、Sentinel控制台


下载:https://github.com/alibaba/Sentinel/releases

放到D:盘的sentinel目录里面,并将其启动

java -jar sentinel-dashboard-1.8.5.jar

启动后,访问地址:http://localhost:8080/

用户名和密码:sentinel/sentinel


3、Sentinel开发流程


引进sentinel依赖 -> 定义资源 -> 定义规则 -> 校验规则


3.1、 app-api消费端工程引进依赖

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    <version>2021.0.4.0</version>
</dependency>
<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
    <version>1.8.5</version>
</dependency>


3.1.1、yml新加配置(跟nacos同级)

sentinel:
  transport:
    #配置 Sentinel dashboard 地址
    dashboard: localhost:8080
    #默认8719端口,假如被占用会自动从8719开始依次+1扫描,直至找到未被占用的端口
    port: 8719


3.2、定义资源


  • 适配主流框架自动定义资源
  • 注解方式定义资源 (推荐)

@SentinelResource(value=“user-userInfoList”)

@SentinelResource(value = "tiger-test",blockHandler = "userInfoListBlockHandler")
public List<UserInfo> userInfoList(){
    return this.userService.userInfoList();
}

public List<UserInfo>   userInfoListBlockHandler(BlockException blockException){
    log.info("#########################################userInfoListBlockHandler");
    return null;
}


3.3、定义规则


3.3.1、流量控制

属性 说明 默认值
资源名 流控规则的作用对象。 -
阈值 流控的阈值。 -
阈值类型 流控阈值的类型,包括 QPS 或并发线程数。 QPS
针对来源 流控针对的调用来源。 default,表示不区分调用来源
流控模式 调用关系限流策略,包括直接、链路和关联。 直接
流控效果 流控效果(直接拒绝、Warm Up、匀速排队),不支持按调用关系限流。 直接拒绝


3.3.2、流控模式


  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

使用场景:

a、两个有竞争关系的资源

b、一个优先级较高,一个优先级较低

  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
    例如有两条请求链路:
  • /test1 --> /common
  • /test2 --> /common

说明:Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合


3.3.3、流控效果


快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长


当请求超过QPS阈值时,快速失败和warm up

会拒绝新的请求并抛出异常。而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout =

2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常

打开命令行窗口,执行以下命令查看资源的实时统计信息。

curl http://localhost:8719/cnode?id=userInfolist

idx id                thread    pass      blocked   success    total    aRt   1m-pass   1m-block   1m-all   exceptio
2   userInfoList      0        0.0       0.0       0.0        0.0      0.0   10        16         26       0.0

实时统计信息各列名说明如下:


  • thread: 代表当前处理该资源的并发数;
  • pass: 代表一秒内到来到的请求;
  • blocked: 代表一秒内被流量控制的请求数量;
  • success: 代表一秒内成功处理完的请求;
  • total: 代表到一秒内到来的请求以及被阻止的请求总和;
  • RT: 代表一秒内该资源的平均响应时间;
  • 1m-pass: 则是一分钟内到来的请求;
  • 1m-block: 则是一分钟内被阻止的请求;
  • 1m-all: 则是一分钟内到来的请求和被阻止的请求的总和;
  • exception: 则是一秒内业务本身异常的总和


3.3.4、熔断降级


Sentinel 的熔断将机制会在调用链路中某个资源出现不稳定状态时(例如调用超时或异常比例升高),暂时切断对这个资源的调用,以避免局部不稳定因素导致整个系统的雪崩。

Sentinel 提供了 3 种熔断策略

熔断策略 说明
慢调用比例(SLOW_REQUEST_RATIO)
异常比例 (ERROR_RATIO) 当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目且异常的比例大于阈值,则在接下来的熔断时长内请求会自动被熔断。

经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。异常比率的阈值范围是 [0.0, 1.0],代表 0% - 100%。 |

| 异常数 (ERROR_COUNT) | 当单位统计时长内的异常数目超过阈值之后会自动进行熔断。


经过熔断时长后熔断器会进入探测恢复状态(HALF-OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。 |

状态 说明 触发条件
熔断关闭状态(CLOSED)

处于关闭状态时,请求可以正常调用资源。

满足以下任意条件,Sentinel 熔断器进入熔断关闭状态:
- 全部请求访问成功。
- 单位统计时长(statIntervalMs)内请求数目小于设置的最小请求数目。
- 未达到熔断标准,例如服务超时比例、异常数、异常比例未达到阈值。
- 处于探测恢复状态时,下一个请求访问成功。

熔断开启状态 (OPEN)

处于熔断开启状态时,熔断器会一定的时间(规定的熔断时长)内,暂时切断所有请求对该资源的调用,并调用相应的降级逻辑使请求快速失败避免系统崩溃。

满足以下任意条件,Sentinel 熔断器进入熔断开启状态:

- 单位统计时长内请求数目大于设置的最小请求数目,且已达到熔断标准,例如请求超时比例、异常数、异常比例达到阈值。

- 处于探测恢复状态时,下一个请求访问失败。

探测恢复状态(HALF-OPEN)

处于探测恢复状态时,Sentinel 熔断器会允许一个请求调用资源。则若接下来的一个请求成功完成(没有错误)则结束熔断,熔断器进入熔断关闭(CLOSED)状态;否则会再次被熔断,熔断器进入熔断开启(OPEN)状态。

在熔断开启一段时间(降级窗口时间或熔断时长,单位为 s)后,Sentinel 熔断器自动会进入探测恢复状态。

Sentinel 熔断规则属性

属性 说明 默认值 使用范围
资源名 规则的作用对象。 - 所有熔断策略
熔断策略 Sentinel 支持3 中熔断策略:慢调用比例、异常比例、异常数策略。 慢调用比例 所有熔断策略
最大 RT 请求的最大相应时间,请求的响应时间大于该值则统计为慢调用。 - 慢调用比例
熔断时长 熔断开启状态持续的时间,超过该时间熔断器会切换为探测恢复状态(HALF-OPEN),单位为 s。 - 所有熔断策略
最小请求数 熔断触发的最小请求数,请求数小于该值时即使异常比率超出阈值也不会熔断(1.7.0 引入)。 5 所有熔断策略
统计时长 熔断触发需要统计的时长(单位为 ms),如 60*1000 代表分钟级(1.8.0 引入)。 1000 ms 所有熔断策略
比例阈值 分为慢调用比例阈值和异常比例阈值,即慢调用或异常调用占所有请求的百分比,取值范围 [0.0,1.0]。 - 慢调用比例 、异常比例
异常数 请求或调用发生的异常的数量。 - 异常数


3.3.5、通过Nacos配置规则

[
    {
        "resource": "tiger-test",
        "limitApp": "default",
        "grade": 1,
        "count": 5,
        "strategy": 0,
        "controlBehavior": 0,
        "clusterMode": false
    }
]

limitApp:来源应用;

  • 流控规则
  • 熔断规则

    (注:没有RT这个参数哈)
[
    {
        "resource": "user-userInfoList",
        "grade": 0,
        "limitApp": "default",
        "count":2000,
        "slowRatioThreshold": 0.6,
        "timeWindow": 60,
        "minRequestAmount": 5,
        "statIntervalMs":8000,
        "clusterMode": false
    }
]

工程配置读取nacos的限流规则(在sentinel底下,跟web-context-unify同级)


spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合
      datasource:
        ds:
          nacos:
            server-addr: localhost:8848
            data-id: user-sentinel
            group-id: DEFAULT_GROUP
            rule-type: flow
/**
     * flow.
     */
    FLOW("flow", FlowRule.class),
    /**
     * degrade.
     */
    DEGRADE("degrade", DegradeRule.class),
    /**
     * param flow.
     */
    PARAM_FLOW("param-flow", ParamFlowRule.class),
    /**
     * system.
     */
    SYSTEM("system", SystemRule.class),
    /**
     * authority.
     */
    AUTHORITY("authority", AuthorityRule.class),

配置多个nacos配置文件

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合
      datasource:    
         ds1:
           nacos:
             server-addr: localhost:8848
             data-id: user-sentinel-flow
             group-id: DEFAULT_GROUP
             rule-type: flow
         ds2:
           nacos:
             server-addr: localhost:8848
             data-id: user-sentinel-degrade
             group-id: DEFAULT_GROUP
             rule-type: degrade


4、Sentinel与Gateway的整合


4.1、添加依赖

<!--gateway整合sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-alibaba-sentinel-gateway</artifactId>
    <version>2021.0.4.0</version>
</dependency>
<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
    <version>1.8.5</version>
</dependency>
<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-spring-cloud-gateway-adapter</artifactId>
    <version>1.8.6</version>
</dependency>
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    <version>2021.0.4.0</version>
</dependency>
sentinel:
  transport:
    # 配置Sentinel dashboard地址
    dashboard: localhost:8080
    # 默认8719端口,键入被占用会自动从8719+1,直到找到未被占用的端口
    port: 8719

4.2、详细配置


接下来对sentinel控制台中对gateway网关链路的流控配置项做详细的介绍,下图所示都是针对网关api附加的。

API类型

我们可以根据某个路由进行流控,也可以根据API分组进行流控,也就是请求访问地址来进行流控

首先创建API分组

选择API分组

然后在进行相应的流控规则。

针对请求属性

参数属性有五种:客户端ip、远程请求地址、请求头、请求url参数、Cookie

这里其实也就是对应的gateway中路由的匹配规则

匹配模式提供了三种:精确、子串、正则

子串匹配模式就是:我们指定127,它会自动再结尾加上%进行模糊匹配——127%

Client IP

测试

Remote Host

因为我们没有远程域名,所以这里就不进行测试了

Header

使用postman请求进行测试,如果请求头不为这个值就不会被限流

URL参数

测试

间隔

这个间隔的意思就是,以前1秒钟请求三次就会抛异常,而现在是两秒内请求三次才会抛异常,也就是说间隔从以前的一秒改变了。

Burst size

Burst size相当于是一个宽容次数,以前是1秒钟请求三次就会报异常,现在会宽容1次,也就是一秒钟请求大于三次才会抛异常

网关流控规则 GatewayFlowRule 的核心属性如下:

① resourceMode:规则是针对 API Gateway 的 route(RESOURCE_MODE_ROUTE_ID)还是用户在 Sentinel 中定义的 API 分组(RESOURCE_MODE_CUSTOM_API_NAME),默认是 route。

② resource:资源名称,可以是网关中的 route 名称或者用户自定义的 API 分组名称。

③ grade:限流指标维度,同限流规则的 grade 字段

④ count:限流阈值

⑤ intervalSec:统计时间窗口,单位是秒,默认是 1 秒

⑥ controlBehavior:流量整形的控制效果,目前支持快速失败和匀速排队两种模式,默认是快速失败。

⑦ burst:应对突发请求时额外允许的请求数目。

⑧ maxQueueingTimeoutMs:匀速排队模式下的最长排队时间,单位是毫秒,仅在匀速排队模式下生效。

⑨ paramItem:参数限流配置。若不提供,则代表不针对参数进行限流,该网关规则将会被转换成普通流控规则;否则会转换成热点规则。其中的字段:

parseStrategy:从请求中提取参数的策略,目前支持提取来源 IP(PARAM_PARSE_STRATEGY_CLIENT_IP)、Host(PARAM_PARSE_STRATEGY_HOST)、任意 Header(PARAM_PARSE_STRATEGY_HEADER)和任意 URL 参数(PARAM_PARSE_STRATEGY_URL_PARAM)四种模式。

fieldName:若提取策略选择 Header 模式或 URL 参数模式,则需要指定对应的 header 名称或 URL 参数名称。

pattern:参数值的匹配模式,只有匹配该模式的请求属性值会纳入统计和流控;若为空则统计该请求属性的所有值。

matchStrategy:参数值的匹配策略,目前支持精确匹配(PARAM_MATCH_STRATEGY_EXACT)、子串匹配(PARAM_MATCH_STRATEGY_CONTAINS)和正则匹配(PARAM_MATCH_STRATEGY_REGEX)。


降级规则

(resource、grade、count、slowRatioThreshold、timeWindow、minRequestAmount、statIntervalMs)

自定义异常返回结果:

sentinel:  
  scg:
    fallback:
      mode: response
      response-status: 200
      response-body: '{"code":"500","message": "系统忙,请稍候再试"}'

代码实现:

/**
 * 熔断、降级回调
 */
@Configuration
public class SentinelGatewayConfig {
    /**
     * 这里可以写降级逻辑
     */
    public SentinelGatewayConfig() {
        GatewayCallbackManager.setBlockHandler(new BlockRequestHandler() {
            // 网关限制了请求,就会调用此回调 Mono Flux
            @Override
            public Mono<ServerResponse> handleRequest(ServerWebExchange serverWebExchange, Throwable throwable) {
                ResponseDTO<Object> objectResponseDTO = new ResponseDTO<>();
                objectResponseDTO.setCode(500);
                objectResponseDTO.setMessage("系统异常,请稍候重试");
                String errJson = JSON.toJSONString(objectResponseDTO);
                Mono<ServerResponse> body = ServerResponse.ok().body(Mono.just(errJson), String.class);
                return body;
            }
        });
    }
}

将路由、限流、降级规则持久化到nacos配置中心

spring:
  application:
    name: gateway-service
  profiles:
    #开发环境dev,测试环境test,生产环境prod
    active: dev
  jackson:
    time-zone: GMT+8
  cloud:
    loadbalancer:
      ribbon:
        enabled: false
    nacos:
      discovery:
        server-addr: localhost:8848  #Nacos server 的地址
      #路由配置
      config:
        server-addr: localhost:8848
        name: gateway-router
        namespace: public
        group: DEFAULT_GROUP
        #file-extension: json #指定yaml格式的配置
        refresh-enabled: true #支持刷新
    #限流熔断配置
    sentinel:
      transport:
        # 配置Sentinel dashboard地址
        dashboard: localhost:8080
        # 默认8719端口,键入被占用会自动从8719+1,直到找到未被占用的端口
        port: 8719
      datasource:
        ds:
          nacos:
            server-addr: localhost:8848
            data-id: user-sentinel
            group-id: DEFAULT_GROUP
            rule-type: flow
目录
打赏
0
0
0
0
59
分享
相关文章
AI 时代:从 Spring Cloud Alibaba 到 Spring AI Alibaba
本次分享由阿里云智能集团云原生微服务技术负责人李艳林主讲,主题为“AI时代:从Spring Cloud Alibaba到Spring AI Alibaba”。内容涵盖应用架构演进、AI agent框架发展趋势及Spring AI Alibaba的重磅发布。分享介绍了AI原生架构与传统架构的融合,强调了API优先、事件驱动和AI运维的重要性。同时,详细解析了Spring AI Alibaba的三层抽象设计,包括模型支持、工作流智能体编排及生产可用性构建能力,确保安全合规、高效部署与可观测性。最后,结合实际案例展示了如何利用私域数据优化AI应用,提升业务价值。
140 4
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
本次分享的主题是阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手,由阿里云两位工程师分享。
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
Spring Cloud Alibaba AI 入门与实践
本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个在线聊天和在线画图的 AI 应用。
357 7
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
【SpringCloud Alibaba系列】Dubbo高级特性篇
本章我们介绍Dubbo的常用高级特性,包括序列化、地址缓存、超时与重试机制、多版本、负载均衡。集群容错、服务降级等。
【SpringCloud Alibaba系列】Dubbo高级特性篇
【SpringCloud Alibaba系列】Dubbo dubbo-admin安装教程篇
本文介绍了 Dubbo-Admin 的安装和使用步骤。Dubbo-Admin 是一个前后端分离的项目,前端基于 Vue,后端基于 Spring Boot。安装前需确保开发环境(Windows 10)已安装 JDK、Maven 和 Node.js,并在 Linux CentOS 7 上部署 Zookeeper 作为注册中心。
【SpringCloud Alibaba系列】Dubbo dubbo-admin安装教程篇
【SpringCloud Alibaba系列】Dubbo基础入门篇
Dubbo是一款高性能、轻量级的开源Java RPC框架,提供面向接口代理的高性能RPC调用、智能负载均衡、服务自动注册和发现、运行期流量调度、可视化服务治理和运维等功能。
【SpringCloud Alibaba系列】Dubbo基础入门篇
Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!
本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。
899 0
|
2月前
|
Spring Cloud Alibaba:一站式微服务解决方案
Spring Cloud Alibaba(简称SCA) 是一个基于 Spring Cloud 构建的开源微服务框架,专为解决分布式系统中的服务治理、配置管理、服务发现、消息总线等问题而设计。
459 13
Spring Cloud Alibaba:一站式微服务解决方案
如何将Spring Boot + RabbitMQ应用程序部署到Pivotal Cloud Foundry (PCF)
如何将Spring Boot + RabbitMQ应用程序部署到Pivotal Cloud Foundry (PCF)
47 6