人工智能,机器学习,深度学习
做个简单介绍:三者的关系如 图1 所示,即:人工智能 > 机器学习 > 深度学习。
深度学习设计框架:
环境查看
import paddle import numpy as np import os import matplotlib import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import warnings warnings.filterwarnings("ignore") print(paddle.__version__)
返回:
数据处理
在这里插入代码片
数据下载
如果你还没安装wget,点击教程安装:window配置安装wget
下载数据:
wget https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data -O housing.data
返回:
开始处理
def load_data(): # 从文件导入数据 datafile = './work/housing.data' data = np.fromfile(datafile, sep=' ', dtype=np.float32) # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数 feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \ 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ] feature_num = len(feature_names) # 将原始数据进行Reshape,变成[N, 14]这样的形状 data = data.reshape([data.shape[0] // feature_num, feature_num]) # 将原数据集拆分成训练集和测试集 # 这里使用80%的数据做训练,20%的数据做测试 # 测试集和训练集必须是没有交集的 ratio = 0.8 offset = int(data.shape[0] * ratio) training_data = data[:offset] # 计算train数据集的最大值,最小值,平均值 maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \ training_data.sum(axis=0) / training_data.shape[0] # 记录数据的归一化参数,在预测时对数据做归一化 global max_values global min_values global avg_values max_values = maximums min_values = minimums avg_values = avgs # 对数据进行归一化处理 for i in range(feature_num): data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) # 训练集和测试集的划分比例 training_data = data[:offset] test_data = data[offset:] return training_data, test_data
模型设计
两步走:
定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测模型中,只需要定义一层全连接层,模型结构和使用Python和Numpy构建神经网络模型》章节模型保持一致。
定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。
class Regressor(paddle.nn.Layer): # self代表类的实例自身 def __init__(self): # 初始化父类中的一些参数 super(Regressor, self).__init__() # 定义一层全连接层,输入维度是13,输出维度是1 self.fc = Linear(in_features=13, out_features=1) # 网络的前向计算 def forward(self, inputs): x = self.fc(inputs) return x
训练配置
配置有如下四步:
1.声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
2.使用load_data函数加载训练数据和测试数据。
3.设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。
代码为:
# 声明定义好的线性回归模型 model = Regressor() # 开启模型训练模式 model.train() # 加载数据 training_data, test_data = load_data() # 定义优化算法,使用随机梯度下降SGD # 学习率设置为0.01 opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
注意:
模型实例有两种状态:训练状态.train()和预测状态.eval()。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算,为模型指定运行状态
训练过程
EPOCH_NUM = 10 # 设置外层循环次数 BATCH_SIZE = 10 # 设置batch大小 # 定义外层循环 for epoch_id in range(EPOCH_NUM): # 在每轮迭代开始之前,将训练数据的顺序随机的打乱 np.random.shuffle(training_data) # 将训练数据进行拆分,每个batch包含10条数据 mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)] # 定义内层循环 for iter_id, mini_batch in enumerate(mini_batches): x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据 y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价) # 将numpy数据转为飞桨动态图tensor形式 house_features = paddle.to_tensor(x) prices = paddle.to_tensor(y) # 前向计算 predicts = model(house_features) # 计算损失 loss = F.square_error_cost(predicts, label=prices) avg_loss = paddle.mean(loss) if iter_id%20==0: print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy())) # 反向传播 avg_loss.backward() # 最小化loss,更新参数 opt.step() # 清除梯度 opt.clear_grad()
返回: