Redis必知必会之zset底层—Skip List跳跃列表(面试加分项)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis必知必会之zset底层—Skip List跳跃列表(面试加分项)

一、简介

跳表全称叫做跳跃表,简称跳表。跳表是一个随机化的数据结构,实质就是一种可以进行二分查找的有序链表。跳表在原有的有序链表上面增加了多级索引,通过索引来实现快速查找。跳表不仅能提高搜索性能,同时也可以提高插入和删除操作的性能。


Skip List(跳跃列表)这种随机的数据结构,可以看做是一个二叉树的变种,它在性能上与红黑树、AVL树很相近;但是Skip List(跳跃列表)的实现相比前两者要简单很多,目前Redis的zset实现采用了Skip List(跳跃列表)(其它还有LevelDB等也使用了跳跃列表)。

RBT红黑树与Skip List(跳跃列表)简单对比:

RBT红黑树


插入、查询时间复杂度O(logn)

数据天然有序

实现复杂,设计变色、左旋右旋平衡等操作

需要加锁

Skip List跳跃列表


插入、查询时间复杂度O(logn)

数据天然有序

实现简单,链表结构

无需加锁


二、Skip List算法分析

2.1 Skip List论文

这里贴出Skip List的论文,需要详细研究的请看论文,下文部分公式、代码、图片出自该论文。

_Skip Lists: A Probabilistic Alternative to Balanced Trees _


https://www.cl.cam.ac.uk/teaching/2005/Algorithms/skiplists.pdf



2.2 Skip List动态图

先通过一张动图来了解Skip List的插入节点元素的流程,此图来自维基百科。image.png2.3 Skip List算法性能分析

2.3.1 计算随机层数算法

首先分析的是执行插入操作时计算随机数的过程,这个过程会涉及层数的计算,所以十分重要。对于节点他有如下特性:


节点都有第一层的指针

节点有第i层指针,那么第i+1层出现的概率为p

节点有最大层数限制,MaxLevel


计算随机层数的伪代码:

论文中的示例

image.png2.3.2 节点包含的平均指针数目

Skip List属于空间换时间的数据结构,这里的空间指的就是每个节点包含的指针数目,这一部分是额外的内内存开销,可以用来度量空间复杂度。random()是个随机数,因此产生越高的节点层数,概率越低(Redis标准源码中的晋升率数据1/4,相对来说Skip List的结构是比较扁平的,层高相对较低)。其定量分析如下:


level = 1 概率为1-p

level >=2 概率为p

level = 2 概率为p(1-p)

level >= 3 概率为p^2

level = 3 概率为p^2(1-p)

level >=4 概率为p^3

level = 4 概率为p^3(1-p)

……

得出节点的平均层数(节点包含的平均指针数目):image.png所以Redis中p=1/4计算的平均指针数目为1.33


2.3.3 时间复杂度计算

以下推算来自论文内容

假设p=1/2,在以p=1/2生成的16个元素的跳过列表中,我们可能碰巧具有9个元素,1级3个元素,3个元素3级元素和1个元素14级(这不太可能,但可能会发生)。我们该怎么处理这种情况?如果我们使用标准算法并在第14级开始我们的搜索,我们将会做很多无用的工作。那么我们应该从哪里开始搜索?此时我们假设SkipList中有n个元素,第L层级元素个数的期望是1/p个;每个元素出现在L层的概率是p^(L-1), 那么第L层级元素个数的期望是 n * (p^L-1);得到1 / p =n * (p^L-1)image.png所以我们应该选择MaxLevel = log(1/p)^n

定义:MaxLevel = L(n) = log(1/p)^n


推算Skip List的时间复杂度,可以用逆向思维,从层数为i的节点x出发,返回起点的方式来回溯时间复杂度,节点x点存在两种情况:


节点x存在(i+1)层指针,那么向上爬一级,概率为p,对应下图situation c.

节点x不存在(i+1)层指针,那么向左爬一级,概率为1-p,对应下图situation b.image.png上面推演的结果可知,爬升k个level的预期长度为k/p,爬升一个level的长度为1/p。


由于MaxLevel = L(n), C(k) = k / p,因此期望值为:(L(n) – 1) / p;将L(n) = log(1/p)^n 代入可得:(log(1/p)^n - 1) / p;将p = 1 / 2 代入可得:2 * log2^n - 2,即O(logn)的时间复杂度。



三、Skip List特性及其实现

2.1 Skip List特性

Skip List跳跃列表通常具有如下这些特性


Skip List包含多个层,每层称为一个level,level从0开始递增

Skip List 0层,也就是最底层,应该包含所有的元素

每一个level/层都是一个有序的列表

level小的层包含level大的层的元素,也就是说元素A在X层出现,那么 想X>Z>=0的level/层都应该包含元素A

每个节点元素由节点key、节点value和指向当前节点所在level的指针数组组成


2.2 Skip List查询

假设初始Skip List跳跃列表中已经存在这些元素,他们分布的结构如下所示:image.png从Skip List跳跃列表最顶层level3开始,往后查询到10 < 88 && 后续节点值为null && 存在下层level2

level2 10往后遍历,27 < 88 && 后续节点值为null && 存在下层level1

level1 27往后遍历,88 = 88,查询命中


2.3 Skip List插入

Skip List的初始结构与2.3中的初始结构一致,此时假设插入的新节点元素值为90,插入路线如下所示:


查询插入位置,与Skip List查询方式一致,这里需要查询的是第一个比90大的节点位置,插入在这个节点的前面, 88 < 90 < 100

构造一个新的节点Node(90),为插入的节点Node(90)计算一个随机level,这里假设计算的是1,这个level时随机计算的,可能时1、2、3、4…均有可能,level越大的可能越小,主要看随机因子x ,层数的概率大致计算为 (1/x)^level ,如果level大于当前的最大level3,需要新增head和tail节点

节点构造完毕后,需要将其插入列表中,插入十分简单步骤 -> Node(88).next = Node(90); Node(90).prev = Node(80); Node(90).next = Node(100); Node(100).prev = Node(90);image.png2.4 Skip List删除

删除的流程就是查询到节点,然后删除,重新将删除节点左右两边的节点以链表的形式组合起来即可,这里不再画图



四、手写实现一个简单Skip List

实现一个Skip List比较简单,主要分为两个步骤:


定义Skip List的节点Node,节点之间以链表的形式存储,因此节点持有相邻节点的指针,其中prev与next是同一level的前后节点的指针,down与up是同一节点的多个level的上下节点的指针

定义Skip List的实现类,包含节点的插入、删除、查询,其中查询操作分为升序查询和降序查询(往后和往前查询),这里实现的Skip List默认节点之间的元素是升序链表

3.1 定义Node节点

Node节点类主要包括如下重要属性:


score -> 节点的权重,这个与Redis中的score相同,用来节点元素的排序作用

value -> 节点存储的真实数据,只能存储String类型的数据

prev -> 当前节点的前驱节点,同一level

next -> 当前节点的后继节点,同一level

down -> 当前节点的下层节点,同一节点的不同level

up -> 当前节点的上层节点,同一节点的不同level

image.png3.2 SkipList节点元素的操作类

SkipList主要包括如下重要属性:


head -> SkipList中的头节点的最上层头节点(level最大的层的头节点),这个节点不存储元素,是为了构建列表和查询时做查询起始位置的,具体的结构请看2.3中的结构

tail -> SkipList中的尾节点的最上层尾节点(level最大的层的尾节点),这个节点也不存储元素,是查询某一个level的终止标志

level -> 总层数

size -> Skip List中节点元素的个数

random -> 用于随机计算节点level,如果 random.nextDouble() < 1/2则需要增加当前节点的level,如果当前节点增加的level超过了总的level则需要增加head和tail(总level)

package com.liziba.skiplist;
import java.util.Random;
/**
 * <p>
 *      跳表实现
 * </p>
 *
 * @Author: Liziba
 */
public class SkipList {
    /** 最上层头节点 */
    public Node head;
    /** 最上层尾节点 */
    public Node tail;
    /** 总层数 */
    public int level;
    /** 元素个数 */
    public int size;
    public Random random;
    public SkipList() {
        level = size = 0;
        head = new Node(null);
        tail = new Node(null);
        head.next = tail;
        tail.prev = head;
    }
    /**
     * 查询插入节点的前驱节点位置
     *
     * @param score
     * @return
     */
    public Node fidePervNode(Double score) {
        Node p = head;
        for(;;) {
            // 当前层(level)往后遍历,比较score,如果小于当前值,则往后遍历
            while (p.next.value == null && p.prev.score <= score)
                p = p.next;
            // 遍历最右节点的下一层(level)
            if (p.down != null)
                p = p.down;
            else
                break;
        }
        return p;
    }
    /**
     * 插入节点,插入位置为fidePervNode(Double score)前面
     *
     * @param score
     * @param value
     */
    public void insert(Double score, String value) {
        // 当前节点的前置节点
        Node preNode = fidePervNode(score);
        // 当前新插入的节点
        Node curNode = new Node(score, value);
        // 分数和值均相等则直接返回
        if (curNode.value != null && preNode.value != null && preNode.value.equals(curNode.value)
                  && curNode.score.equals(preNode.score)) {
            return;
        }
        preNode.next = curNode;
        preNode.next.prev = curNode;
        curNode.next = preNode.next;
        curNode.prev = preNode;
        int curLevel = 0;
        while (random.nextDouble() < 1/2) {
            // 插入节点层数(level)大于等于层数(level),则新增一层(level)
            if (curLevel >= level) {
                Node newHead = new Node(null);
                Node newTail = new Node(null);
                newHead.next = newTail;
                newHead.down = head;
                newTail.prev = newHead;
                newTail.down = tail;
                head.up = newHead;
                tail.up = newTail;
                // 头尾节点指针修改为新的,确保head、tail指针一直是最上层的头尾节点
                head = newHead;
                tail = newTail;
                ++level;
            }
            while (preNode.up == null)
                preNode = preNode.prev;
            preNode = preNode.up;
            Node copy = new Node(null);
            copy.prev = preNode;
            copy.next = preNode.next;
            preNode.next.prev = copy;
            preNode.next = copy;
            copy.down = curNode;
            curNode.up = copy;
            curNode = copy;
            ++curLevel;
        }
        ++size;
    }
    /**
     * 查询指定score的节点元素
     * @param score
     * @return
     */
    public Node search(double score) {
        Node p = head;
        for (;;) {
            while (p.next.score != null && p.next.score <= score)
                p = p.next;
            if (p.down != null)
                p = p.down;
            else // 遍历到最底层
                if (p.score.equals(score))
                    return p;
                return null;
        }
    }
    /**
     * 升序输出Skip List中的元素 (默认升序存储,因此从列表head往tail遍历)
     */
    public void dumpAllAsc() {
        Node p = head;
        while (p.down != null) {
            p = p.down;
        }
        while (p.next.score != null) {
            System.out.println(p.next.score + "-->" + p.next.value);
            p = p.next;
        }
    }
    /**
     * 降序输出Skip List中的元素
     */
    public void dumpAllDesc() {
        Node p = tail;
        while (p.down != null) {
            p = p.down;
        }
        while (p.prev.score != null) {
            System.out.println(p.prev.score + "-->" + p.prev.value);
            p = p.prev;
        }
    }
    /**
     * 删除Skip List中的节点元素
     * @param score
     */
    public void delete(Double score) {
        Node p = search(score);
        while (p != null) {
            p.prev.next = p.next;
            p.next.prev = p.prev;
            p = p.up;
        }
    }
}


image.png


image.png


image.png


image.png

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
13天前
|
C语言 Python
[oeasy]python054_python有哪些关键字_keyword_list_列表_reserved_words
本文介绍了Python的关键字列表及其使用规则。通过回顾`hello world`示例,解释了Python中的标识符命名规则,并探讨了关键字如`if`、`for`、`in`等不能作为变量名的原因。最后,通过`import keyword`和`print(keyword.kwlist)`展示了Python的所有关键字,并总结了关键字不能用作标识符的规则。
26 9
|
21天前
|
数据挖掘 大数据 数据处理
python--列表list切分(超详细)
通过这些思维导图和分析说明表,您可以更直观地理解Python列表切分的概念、用法和实际应用。希望本文能帮助您更高效地使用Python进行数据处理和分析。
44 14
|
23天前
|
数据挖掘 大数据 数据处理
python--列表list切分(超详细)
通过这些思维导图和分析说明表,您可以更直观地理解Python列表切分的概念、用法和实际应用。希望本文能帮助您更高效地使用Python进行数据处理和分析。
34 10
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
2月前
|
索引 Python
List(列表)
List(列表)。
53 4
|
2月前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
2月前
|
存储 消息中间件 NoSQL
Redis数据结构:List类型全面解析
Redis数据结构——List类型全面解析:存储多个有序的字符串,列表中每个字符串成为元素 Eelement,最多可以存储 2^32-1 个元素。可对列表两端插入(push)和弹出(pop)、获取指定范围的元素列表等,常见命令。 底层数据结构:3.2版本之前,底层采用**压缩链表ZipList**和**双向链表LinkedList**;3.2版本之后,底层数据结构为**快速链表QuickList** 列表是一种比较灵活的数据结构,可以充当栈、队列、阻塞队列,在实际开发中有很多应用场景。
|
2月前
|
JavaScript 数据管理 虚拟化
ArkTS List组件基础:掌握列表渲染与动态数据管理
在HarmonyOS应用开发中,ArkTS的List组件是构建动态列表视图的核心。本文深入探讨了List组件的基础,包括数据展示、性能优化和用户交互,以及如何在实际开发中应用这些知识,提升开发效率和应用性能。通过定义数据源、渲染列表项和动态数据管理,结合虚拟化列表和条件渲染等技术,帮助开发者构建高效、响应式的用户界面。
218 2
|
3月前
|
NoSQL 关系型数据库 MySQL
Redis 列表(List)
10月更文挑战第16天
42 2