Survey | 深度学习方法在生物网络中的应用

简介: Survey | 深度学习方法在生物网络中的应用

image.png

今天介绍厦门大学刘向荣老师团队在Briefings in Bioinformatics上发表的一篇综述论文,该论文首先介绍了应用在网络数据上的深度学习几种典型的模型,然后根据不同的生物网络数据分类,介绍了现有的实际研究和工作;最后对这篇文章提到的方法进行了总结和讨论。


1


背景


生物系统有很多不同层面和不同组织形式的网络,包括基因转录调控网络、生物代谢与信号传导网络、蛋白质相互作用网络等。除此之外,人们利用各种实验研究手段获得了像药物靶点网络,疾病与生物分子的关联网络等。生物网络的研究也涉及到生物分子以及与生物分子相关的各个方面。这些网络中的节点可以代表蛋白质,基因,疾病,以及一些与靶点相关联的药物等,网络中的边对应着节点之间的各种生化,物理或者功能交互等关联。深度学习的框架是学习样本数据的内在规律和表示层次,通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类预测等学习任务。随着深度学习技术的发展,被应用在网络数据上的深度学习算法也取得了很好的效果。这篇综述主要的目的就是为了介绍已有的利用深度学习模型在生物网络上的应用,及其可能应用的前景,为对这个领域感兴趣的研究人员提供一个参考。

image.png

图1 生物分子网络和深度学习发展的重要事件


2


模型介绍


这一部分,作者简要介绍了一些应用在网络数据上具有代表性的深度学习模型,包括基于RandomWalk的DeepWalk,基于AutoEncoder的Graph AutoEncoders (GAEs),基于CNN的Graph Convolution Networks (GCNs),基于RNN的Graph Recurrent Neural Networks (Graph RNNs)。

image.png

图2 应用在网络数据上具有代表性的深度学习模型


3


深度学习在生物网络中的应用


生物网络包含了生物体之间的大量信息。生物网络的探索对于理解生物分子的内在联系、药物的发现、疾病的治疗以及微生物的作用机制都是非常重要的。这些应用在网络数据上的深度学习模型可以多层次地表示网络结构,捕捉已知生物网络的拓扑特征,并结合其他异构信息挖掘生物网络中的潜在关联。在这一部分该论文通过对基因组数据研究、蛋白质组数据研究、转录组数据研究、药物发现、疾病生物学和微生物组数据研究六个方面,对现有的利用深度学习方法在生物网络数据上的研究应用进行了总结和介绍,希望够为今后利用深度学习技术挖掘生物网络中包含的信息提供思路。在介绍的过程中,作者选择了三个典型的研究案例,绘制了具体研究实例的流程图。

image.png

图3 生物网络数据中运用AutoEncoder模型的研究实例流程图

image.png

图4 生物网络数据中运用DeepWalk模型的研究实例流程

image.png

图5 生物网络数据中运用GCN模型的研究实例流程图


4


挑战和机遇


该论文主要从数据处理,异构信息,深度学习模型的限制方面介绍了现在深度学习在生物网络数据应用上的挑战。对于数据处理,目前许多生物数据集在样本类别上存在不平衡,生物数据的质量保证可能需要更为专业的研究人员获取更准确的数据。在计算时还应该找到克服数据冗余、不平衡和不完整的方法,以提高预测的准确性。生物网络可能包含多种生物分子,除了生物网络数据,还需要结合不同的生物信息来提高计算的准确性,如基因表达谱、蛋白质分子序列、药物分子结构、疾病的CT图像等。所以怎样更好的结合这些异构信息去进行计算,也是未来发展的重点和难点。虽然随着现在生物系统中可用的数据越来越多,但是对于许多深度学习框架来说,其数量级仍然很小,并且无法充分利用深度学习训练的优势。未来仍然需要提出更适合不同生物数据的深度学习模型来解决一些小而稀疏的生物数据集研究。


5


关键点总结


利用生物网络数据可以获得生物分子之间的关联性质。将生物网络数据与其他生物信息相结合可以提高预测性能。


应用在网络数据上的深度学习的引入为生物网络数据的处理带来了新的方向,能够处理大量的、多维的、复杂的生物数据。


将其他算法与深度学习模型相结合,可以克服一些数据质量问题的影响,提高深度学习算法的适用性。


目录
相关文章
|
1天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
18 7
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第22天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术原理、优势以及面临的挑战。通过实例展示了深度学习如何推动图像识别技术的发展,并对未来趋势进行了展望。
9 5
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第20天】 随着人工智能技术的不断发展,深度学习已经在许多领域展现出强大的应用潜力。本文将探讨深度学习在图像识别领域的应用,以及面临的挑战和可能的解决方案。通过分析现有的研究成果和技术趋势,我们可以更好地理解深度学习在图像识别中的潜力和局限性,为未来的研究和应用提供参考。
20 7
|
3天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用
【10月更文挑战第21天】本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,并展示如何使用Python和TensorFlow库实现一个简单的图像识别模型。通过这个示例,我们将了解深度学习如何帮助计算机“看”世界,并展望其在未来的应用前景。
13 5
|
2天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
3天前
|
缓存 监控 前端开发
优化网络应用的性能
【10月更文挑战第21天】优化网络应用的性能
8 2
|
2天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
9 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:从基础到应用
本文将深入浅出地探讨深度学习的基本概念、原理和应用,帮助读者理解这一领域的核心内容。我们将从神经网络的基本结构出发,逐步深入到深度学习的关键技术和实际应用。通过本文的学习,读者将对深度学习有一个全面的认识,并能够将其应用于实际问题中。
|
6天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第18天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术优势和面临的主要挑战。通过具体案例和数据支持,展示了深度学习如何革新图像识别技术,并指出了未来发展的方向。
102 58