Machine Learning | (12) 非监督学习-k-means

简介: Machine Learning | (12) 非监督学习-k-means

Machine Learning | 机器学习简介


Machine Learning | (1) Scikit-learn与特征工程


Machine Learning | (2) sklearn数据集与机器学习组成


Machine Learning | (3) Scikit-learn的分类器算法-k-近邻


Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归


Machine Learning | (5) Scikit-learn的分类器算法-朴素贝叶斯


Machine Learning | (6) Scikit-learn的分类器算法-性能评估


Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)


Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)


Machine Learning | (9) 回归算法-线性回归


Machine Learning | (10) 回归算法-岭回归


Machine Learning | (11) 回归性能评估与欠拟合、过拟合


非监督学习之k-means

K-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。


1.首先,随机设K个特征空间内的点作为初始的聚类中心。

2.然后,对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为这个聚类中心。

3.接着,在所有的数据都被标记过聚类中心之后,根据这些数据新分配的类簇,通过取分配给每个先前质心的所有样本的平均值来创建新的质心重,新对K个聚类中心做计算。

4.最后,计算旧和新质心之间的差异,如果所有的数据点从属的聚类中心与上一次的分配的类簇没有变化,那么迭代就可以停止,否则回到步骤2继续循环。

K均值等于具有小的全对称协方差矩阵的期望最大化算法


sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto')
  """
  :param n_clusters:要形成的聚类数以及生成的质心数
  :param init:初始化方法,默认为'k-means ++',以智能方式选择k-均值聚类的初始聚类中心,以加速收敛;random,从初始质心数据中随机选择k个观察值(行
  :param n_init:int,默认值:10使用不同质心种子运行k-means算法的时间。最终结果将是n_init连续运行在惯性方面的最佳输出。
  :param n_jobs:int用于计算的作业数量。这可以通过并行计算每个运行的n_init。如果-1使用所有CPU。如果给出1,则不使用任何并行计算代码,这对调试很有用。对于-1以下的n_jobs,使用(n_cpus + 1 + n_jobs)。因此,对于n_jobs = -2,所有CPU都使用一个。
  :param random_state:随机数种子,默认为全局numpy随机数生成器
  """
from sklearn.cluster import KMeans
import numpy as np
X = np.array([[1, 2], [1, 4], [1, 0],[4, 2], [4, 4], [4, 0]])
kmeans = KMeans(n_clusters=2, random_state=0)

方法

fit(X,y=None)

使用X作为训练数据拟合模型

kmeans.fit(X)

predict(X)

预测新的数据所在的类别

kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)

属性

clustercenters

集群中心的点坐标

kmeans.cluster_centers_
array([[ 1.,  2.],
       [ 4.,  2.]])

labels_

每个点的类别

kmeans.labels_

k-means ++

 

k-means案例分析

手写数字数据上K-Means聚类的演示

from sklearn.metrics import silhouette_score
from sklearn.cluster import KMeans
def kmeans():
    """
    手写数字聚类过程
    :return: None
    """
    # 加载数据
    ld = load_digits()
    print(ld.target[:20])
    # 聚类
    km = KMeans(n_clusters=810)
    km.fit_transform(ld.data)
    print(km.labels_[:20])
    print(silhouette_score(ld.data,km.labels_))
    return None
if __name__=="__main__":
    kmeans()


目录
相关文章
|
8月前
|
机器学习/深度学习 数据采集 算法
Machine Learning机器学习之随机森林(Random Forests)
Machine Learning机器学习之随机森林(Random Forests)
|
机器学习/深度学习 算法 vr&ar
Machine Learning-L19-条件随机场
Machine Learning-L19-条件随机场
Machine Learning-L19-条件随机场
|
机器学习/深度学习 算法
Machine Learning-L8-SVM:支持向量机全面解析
Machine Learning-L8-SVM:支持向量机全面解析
Machine Learning-L8-SVM:支持向量机全面解析
|
机器学习/深度学习 算法 数据挖掘
周志华《Machine Learning》学习笔记(11)--聚类
聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。
171 0
周志华《Machine Learning》学习笔记(11)--聚类
|
机器学习/深度学习 自然语言处理 算法
Machine Learning-L20-降维
Machine Learning-L20-降维
Machine Learning-L20-降维
|
存储 编解码 算法
Machine Learning-L14-聚类(下)
Machine Learning-L14-聚类(下)
Machine Learning-L14-聚类(下)
|
机器学习/深度学习 存储 算法
|
机器学习/深度学习 算法 Python
Machine Learning-L6-逻辑回归
Machine Learning-L6-逻辑回归
Machine Learning-L6-逻辑回归
|
算法 数据建模 数据挖掘
Machine Learning-L4-决策树
Machine Learning-L4-决策树
Machine Learning-L4-决策树
|
算法
Machine Learning-L5-回归分析
Machine Learning-L5-回归分析
Machine Learning-L5-回归分析